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State Representation? Model Class?

Particle + Graph Neural Networks

Result

Li, Wu, Tedrake, Tenenbaum, Torralba

Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids
ICLR 2019

Image Patch + Graph Neural Networks

Yi*, Gan*, Li, Kohli, Wu, Torralba, Tenenbaum

CLEVRER: Collision Events for Video Representation and Reasoning
ICLR 2020




State Representation? Model Class?

Keypoints + MLP Keypoints + Graph Neural Networks
Predicted graph Predicted keypoint Ground truth keypoint

Hardware Results:Robot Camera Perspective

Predicted graph Predicted keypoint Ground truth keypoint
movements movements

We show the 4 different trajectories used
for quantitative Experiments

Li, Torralba, Anandkumar, Fox, Garg
Causal Discovery in Physical Systems from Videos
In submission.

Manuelli, Li, Florence, Tedrake.
In submission
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« Different representations and model classes are suitable for different scenarios / tasks.
« There may not need a “universal” choice that works for all use cases.
» |tis essential to understand the advantages and limitations.



State Representation? Model Class?

« Different representations and model classes are suitable for different scenarios / tasks.
« There may not need a “universal” choice that works for all use cases.
» |tis essential to understand the advantages and limitations.

« Compositional Koopman Operators lies in the category of
* Object-centric latent vectors
« Graph Neural Networks + Linear Dynamics



Problem

» Given observations from a system of unknown dynamics
't = F(z!, u')

system state x'  control signal u’ dynamics F

 Task 1: system identification

 Task 2: control synthesis
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Previous Methods

 The Koopman Operator Theory

Ty = F(xy)

Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, and J. Nathan Kutz
Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control
PloS one 11.2 (2016).
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Previous Methods

 The Koopman Operator Theory
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?:J.Z- ------ . Ys
K;: %
¢
B .

Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, and J. Nathan Kutz
Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control
PloS one 11.2 (2016).



Previous Methods

x2=9

7

7
N7

potential

“amwsvo =X
2%

=
\“,!{{

e [\ [

Lusch, Bethany, J. Nathan Kutz, and Steven L. Brunton
Deep learning for universal linear embeddings of nonlinear dynamics
Nature communications 9.1 (2018): 4950.



Previous Methods

Morton, Jeremy, et al.
Deep dynamical modeling and control of unsteady fluid flows.
Advances in Neural Information Processing Systems. 2018.



Previous Methods

Bruder, Daniel, Brent Gillespie, C. David Remy, and Ram Vasudevan
Modeling and Control of Soft Robots Using the Koopman Operator and Model Predictive Control
RSS 2019.



Previous Methods

 The Koopman Operator Theory
Ltt1 — F(a:t) Yt — g il?t Yt+1 — Kyt
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Learned dynamlcs IS linear

+ Easy to adapt

+ Easy for control
Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, and J. Nathan Kutz - Unable tO hanC”e
Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynam “yn
PIoS one 11.2 (2016). compositional system




Graph Neural

The Koopman
Networks

Operator Theory

+ Capture the - Unable to handle
compositionality compositional systems
- Hard to adapt + Easy to adapt

- Hard for control + Easy for control




- + Generalize to
Compositional compositional systems

Koopman

Operators + Easy to adapt
+ Easy for control




Motivating example !

Consider a system with N balls connected by linear spring.
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Motivating example !

Consider a system with N balls connected by linear spring.

"

m.l A B o B L1 Image from Kipf et al. ICML 2018.
Lo B A --- Bl |z
L = . = |. . .
TN B B --- Al [Lzy.

Three observations:

(1) The system state is composed of the state of each individual object.
(2) The transition matrix has a block-wise substructure.
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Consider a system with N balls connected by linear spring.
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Three observations:

(1) The system state is composed of the state of each individual object.
(2) The transition matrix has a block-wise substructure.
(3) The same physical interactions share the same transition block.
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(1) The Koopman embedding of the system is composed of the Koopman embedding of every objects.

gf € RN™ s the concatenation of g%, -, g%



Graph Neural Networks

* Represent the state as a graph, where each component is a node
* Model the interactions between components using neural networks

G = (0O, R)
e = [r(0:,05), 7k = (0i,05)
h; = fO(Oia ZkEN}: ek)
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Compositional Koopman Operators
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Compositional Koopman Operators

Three observations from the spring system:

(1) The system state is composed of the state of each individual object.
(2) The transition matrix has a block-wise substructure.

(3) The same physical interactions share the same transition block.
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Compositional Koopman Operators
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Compositional Koopman Operators

Assuming
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Compositional Koopman Operators Assuming
g(z*) = Kg(z') + Lu’
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« System Identification
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« Least-square fitting.
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Experiments
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1) Manipulating 2) Controlling a soft 3) Controlling a soft
a Rope robot to swing robot to swim in fluids
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Rope Manipulation (Control) |[Target state is shown as red dots.
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Soft Robot Swing (Simulation)
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Soft Robot Swing (Control)
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Soft Robot Swim (Simulation)
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Soft Robot Swim (Control) Target state is shown as red grids.
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Figure 3: Quantitative results on simulation. The x axis shows time steps. The solid lines indicate
medians and the transparent regions are the interquartile ranges of simulation errors. Our method
significantly outperforms the baselines in all testing environments.
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Figure 4: Quantitative results on control and ablation studies on model hyperparameters. Left:
box-plots show the distributions of control errors. The yellow line in the box indicates the median.
Our model consistently achieves smaller errors in all environments against KPM. Right: our model’s
simulation errors with different amount of data for system identification (d) and different dimensions
of the Koopman space (e).



Table 1: Ablation study results on the Koop-
man matrix structure (Rope environment).
For simulation, we show the Mean Squared
Error between the prediction and the ground
truth at 7' = 100, whereas for control, we
show the performance with a horizon of
length 40. The numbers in parentheses
show the performance on extrapolation.

Simulation Control

Diag | 0.133(0.174) 2.337 (2.809)
None | 0.117 (0.083) 1.522 (1.288)
Block | 0.105 (0.075) 0.854 (1.101)
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Summary

« We propose to combine graph neural networks and Koopman Operator Theory

Our formulation

« Captures the compositional structures of the underlying system
« Generalizes to systems with variable numbers of components

« Generalizes to systems with different configurations

The internal linear structure allows

« Quick adaptation to system of unknown physical parameters
* via Least Squares Regression

« Efficient control synthesis
* via Quadratic Programming (QP)
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Limitation and Future Studies

« Assuming the underlying dynamics is smooth or a few times differentiable.

Did not succeed for modeling hard contact.

Adapt to more complicated/realistic scenarios
« Deformable objects / Soft robots
 Fluid / Granular materials
* Cloth / Rope manipulation

How well can it cope with different state representations?

Extend to piecewise affine model
* Fewer pieces to cover the state space

Augment with policy function and/or value function

More theoretical probe on the discrepancy between the Koopman and the state space
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