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Latent Spaces: The ‘Mapping View

\

Map: f(pix) -> low dim l‘I
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A common view of discovering a latent submanifold is to learn a
mapping from high- to low-dim space with some desirable properties

=> the submanifold is represented as an image of some map



source domain

target domain
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Map: f(‘real pix) -> low dim
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Map: f(pix) -> low dim
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Map: f(‘real pix) -> low dim
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[f target domain data is & ==
expensive to get, then

need to reuse info from

the source domain

But how?

Fine-tune f?
- Catastrophic forgetting

- Bad local optima due to
lack of random init

- Small learning rate to
keep latent space structure
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Alternatively, a submanifold can be specified by describing all equations &
(relations) that have to hold of the points in the submanifold

=> the submanifold is represented as a null space of a set of functions

Example: representing an ellipse as an intersection
of a hyperboloid and a plane:

22 4+1y?—222—-1=0 relation ¢
y—2z—1=0 relation go




Latent Spaces: The Relations’ View Py
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The ‘relations’ view allows to encode the latent manifold directly B

This is particularly useful for sim-to-real, since we can encode concisely the
properties of the dynamical system in low-dim relations

4

. Fyoi= | Pyl
L=/

We can then transfer this knowledge directly instead of needing photo-realistic
rendering or struggling with fine-tuning

T
(=T N w

velocity

position
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Previous work proposed using domain knowledge to structure - P

the latent space during training

For example, imposing continuity between consecutive states:

Lcont(Dma ¢) — E[||8t+1_st||2]

s¢ 1s a low-dimensional or latent state, x; is the corresponding
high-dimensional state (e.g. RGB image), D;={x¢,Zt11,...} & encoder ¢(z)=s

Such heuristics draw from intuition and prior knowledge, and it is tedious to
manually incorporate a comprehensive set of these into the overall optimization
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We take a broader perspective: we learn a set of relations that are o
non-linearly independent, and we define independence rigorously

Let RY be the ambient space of possible latent state sequences T
T'IZ[Sl,al,SQ,GQ,HJ

Let M be the submanifold of actual state sequences that our dynamical
system could generate (under any control policy)

Our goal is to capture the data submanifold by learning relations
that have to hold for points in the submanifold
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In linear algebra, a dependency is a linear combination of R
vectors with constant coefficients

In our nonlinear setting the analogous notion is that of syzygy

_________________________________________________________________________________________________________________

___________________________________________________________________________________________________

___________________________________________________________________________________________________

However, this notion of independence deems any ¢g;, g» dependent:
g1 - g2 — g2 - g1 = 0 holds for any g1, g




Analytic Manifold Learning : Mathematical Formulation

Hence, we define restricted syzygies

Definition [Restricted Syzygy] : Restricted syzygy for relations ¢y, ..., g; is a
syzygy with the last entry fi equal to —1,i.e. f = {f1, ..., fr_1, fr=—1} with

k
Z]‘:1 1i9;=0.

Definition [Restricted Independence] : g;. is independent from ¢1, ..., gp_1
in a restricted sense if Z§:1 J79;=0 implies f;. # —1, i.e. if there exists no
restricted syzygy for g1, ..., gi.

Using these we can learn independent relations iteratively

vvvvvvvvv
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Theorem [Restricted Independence] : When using real-analytic functions —

to approximate gs, the process of starting with a relation g; and iteratively
adding new independent g;s will terminate.

Definition [Strong Independence] : g, is strongly independent from
g1, ..., gr—1 if the equality Z§:1 J79;=0 implies that f}, is expressible as
Jk=hi-g1+ ..+ hp1-ge1

Theorem [Strong Independence] : Suppose g1, . . ., g; is a sequence of
analytic functions on B, each strongly independent of the previous ones.

Denote by M 5 = {z € B|g](x) = ( for all j} the part of the learned data
manifold lying in the interior of 5. Then dimension of M g is at most NV — k.
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We also give an alternative definition of independence via transversality B e

It ensures relations differ to first order and also yields guarantees on the
dimensionality of the learned submanifold

Definition [Transversality] : If for all points 7(Y) € M the gradients of

g1, .-, gr at 7, i.e. v = V.g| ), are linearly independent, we say that gy, is
transverse to the previous relations: g; M g1, ..., Gr-1.

Lemma : For once differentiable (g1, .., gx) s.t. H g;$ are transverse along their

common intersection H, this intersection H is a submanifold of R of
dimension N —k.
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Formulating the problem as learning analytic relations g1, -, gk
that cut out the latent data manifold allows us to use
neural networks as function approximators
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Algorithm 1 : Analytic Manifold Learning (AML) ot

1 {7W}L | < rollouts from RL actors

2 tramn g; with loss L=g4(7) — log ||v|| (Eq.1)
3 fork=2,3,....,do

4 if aiming_for_transversality then

5 | train g, with loss Ly, from Eq.2
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Algorithm 1 : Analytic Manifold Learning (AML)

1 {7 }?__1 + rollouts from RL actors

2 train g;|with loss L=g4(7) — log ||v|| (Eq.1)
3 fork=2,3,...,do

4 if aiming_for_transversality then

5 | train g, with loss Ly, from Eq.2




Analytic Manifold Learning : Training with Transversality

Algorithm 1 : Analytic Manifold Learning (AML)

1 {7« rollouts from RL actors

2 train g; with loss L=g4(7) — log ||v|| (Eq.1)
3 fork=2,3,..,do

4 if aiming_for_transversality then

5 | train g, with loss Ly, from Eq.2

L(g) = dg(7) =log|[v]| 5 dy(7) = [g(m)[/[lo]] (D)

e L= dg(r) —log||v||

nv@a

vvvvvvvvv



Analytic Manifold Learning : Training with Transversality

Algorithm 1 : Analytic Manifold Learning (AML)

1 {7« rollouts from RL actors

2 train g with loss L=g4(7) — log ||v|| (Eq.1)
3 fork=2,3,..,do

4 if aiming_for_transversality then

5 | train g, with loss Ly, from Eq.2

vvvvvvvvv
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Algorithm 1 : Analytic Manifold Learning (AML)

1 {7(W}9_, < rollouts from RL actors

2 train gy with loss L=g4(7) —log ||v|| (Eq.1)
3 fork=2,3,....,do

4 | if aiming_for_transversality then

5 | | train gy|withloss Ly, from Eq.2

L(g)=dy(r)=log v ; v="rglw; dy(r)=42L (1)
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L =dy(z)—log|y|
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Algorithm 1 : Analytic Manifold Learning (AML)

1 {7(W}9_, < rollouts from RL actors
2 train gy with loss L=g4(7) —log ||v|| (Eq.1)

3 fork=2,3,....,do g Mg
4 | if aiming for transversality then zztranéverse
5 | |7 train g with loss Ly, from Eq.2 ¢

L(g)=dy(r)=log o[l ; v=Vrglw: do(r)=42 )| Lir(gr) = Ligi) = log [T}2 sin®(0;.0) (2)
(o)
angle(v;,vy,
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L=d(r)-log|V| &

IIM

Algorithm 1 : Analytic Manifold Learning (AML)

1 {7("}L_, « rollouts from RL actors
2 train g; with loss L=g,4(7) — log ||v|| (Eq.1)
3fork=23,....,do

6 | else// using syzygies

7 | train g5, with loss L from Eq.1

8 for ) =1,2,....,do

9 generate Toff, Toff!

10 train §; with L; = |f; (7¢f)|

11 if f; #0 on 757" then break /g, ~indep.
12 while f; (7 (fj‘?;t) ~ 0do

13 L freeze §,; train gy with L, (Eq.3)

L(g):d9<7)_logHUH ; /U:ng’T(i); dg(T):‘g(T)’ (1)
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Algorithm 1 : Analytic Manifold Learning (AML)

{7(14_ < rollouts from RL actors
train g7 with loss L=g4(7) — log ||v]| (Eq.1)

N

3fork=23,....,do

6 else // using syzygies

7 train g with loss L from Eq.1

8 for;=1,2,....do

9 generate Tofy, Tofr"

10 train §; with L; = |f; (7otf)|

11 if f; #0 on 757" then break /g, ~indep.
12 while f; (75?") ~ 0 do

13 L freeze §,; train gy with L, (Eq.3)

Off-manifold data: T,rr ={Soff,, Soffi1s -5 Soffy }
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Algorithm 1 : Analytic Manifold Learning (AML)

{7(14_ < rollouts from RL actors
train g7 with loss L=g4(7) — log ||v]| (Eq.1)

N

3fork=23,....,do

6 else // using syzygies

7 train g with loss L from Eq.1

8 for;=1,2,....do

9 generate Toff, T

10 train §; with L; = |f; (7o¢f)|

11 if f; £0 on 7'¢5* then break!//g,~indep.
12 while f; (75?") ~ 0 do

13 L freeze §,; train gy with L, (Eq.3)

Off-manifold data: T,rr ={Soff,, Soffi1s -5 Soffy }
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Algorithm 1 : Analytic Manifold Learning (AML) Lf= | f(Toff) |— 0 .j%&f
v HN R
1 {T(Z) }le + rollouts from RL actors g, not indep.

[\%}

train g; with loss L=g4(7) — log||v|| (Eq.1)

3fork=23,....,do

6 else // using syzygies

7 train g with loss L from Eq.1

8 for;=1,2,....do

9 generate Toff, Toff "

10 train §; with L; = |f; (7¢f)|

11 if f; #0 on 7/¢7* then break /g, ~indep.
12 while j;(7.:7") ~ 0 do

13 L freeze §,; train gy with L, (Eq.3)

Off-manifold data: T,rr ={Soff,, Soffi1s -5 Soffy }
VLay: (985) = VE(g8) =y, [[{(7ogr 91, o) @)
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Algorithm 1 : Analytic Manifold Learning (AML) Lf =11z Toff )= EL) T
@ HN R rch
1 {7("}L_, « rollouts from RL actors g, not indep.
2 train g7 with loss L=g4(7) — log||v|| (Eq.1) [1] '1] +
3 for k: 2,3,...,do freeze f and
6 else // using syzygies Nont'nue trainining g,
7 train g5, with loss L from Eq.1 / f I ‘ ] %= using VL, (g: 1)
8 for j =1,2,...,do E1 Ty ‘
9 generate Toff, Toff! ’
10 train §; with L; = |f; (7¢f)|
11 if f; #0 on 7/¢7* then break /g, ~indep.
12 while f; (7 (fj‘?;t) ~ 0do
13 L freeze §,; train gy with L, (Eq.3)

Off-manifold data: Toff = {Sofft; Soffrs1s =+ SoffT}

VLuy (953§) = VLK) Vi |[[(Tegro g1, 98)] | )
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Algorithm 1 : Analytic Manifold Learning (AML) Lf =|(z Toff )| — EL) T
@ HN R rch
1 {7("}L_, « rollouts from RL actors g, not indep.
2 train g7 with loss L=g4(7) — log||v|| (Eq.1) [1] '1] +
3 for k: 2,3,...,do freeze f and
6 else // using syzygies Nont'nue trainining g,
7 train g5, with loss L from Eq.1 / f I ‘ ] %= using VL, (g: 1)
8 for j =1,2,...,do E1 Ty ‘
: generate 77, 745" " o
10 train §; with L; = |f; (7¢f)| g,~indep
11 if f; #0 on 757" then break /g, ~indep. v
12 while f; (7 (fj‘?;t) ~ 0do
13 L freeze §,; train gy with L, (Eq.3)

Off-manifold data: Toff = {Sofft; Soffrs1s =+ SoffT}

VLuy (953§) = VLK) Vi |[[(Tegro g1, 98)] | )
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Algorithm 1 : Analytic Manifold Learning (AML) 0 o
: L= — () B
1 {7("}L_, « rollouts from RL actors Yo =1 1Cp)|
2 train g; with loss L=gy(7) — log ||v|| (Eq.1) (i o g, not indep.
3fork=23,....,do Ve
_ . freeze f and
6 else // using syzygies / / \g% /\continue trainining g
7 train g with loss L from Eq.1 o il using VL, (g )
8 for;=1,2,....do Torf
9 generate Toff, Toff! when §#£0:
10 train f; with L; = | 8~ indep.
j i = [F5 (Torr)] : . v
11 if f; #0 on 757" then break /g, ~indep. | Toff Toft
12 while f; (7 (fj‘?;t) ~ 0do
13 L freeze §,; train gy with L, (Eq.3)

Off-manifold data: Toff = {Sofft; Soffrs1s =+ SoffT}

VLsyz(gk; f) — VL(gk) _vgk [‘f(Toffagla 7gk)‘:| (3)
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on-manifold test data wider gi1Ng>Nngs

77/ //% / //7/% T

\4

v

IS

Ffric= P | FN|

w

velocity
~
o - N L:u

-
-

o

training range
0 1 2 3 4 0 1 2
position position
on-manifold test data 91Ng2Nn4gs

e L

P —— - -

oA

—

}
\

% \,/\\\\’7“ =

fer]
o~ =y

N2 S i
i‘i@iﬁs/%zv?

s,
N T 71
== (> /f

15— — =

ey~ <raas o =

> = ) e
2 s = >

8 10| e e

T == = =

> /;,,_ R0 | = E B —
s e
05{ == G Ly w
_— /,7\"\ =N \S oy
AR

= = 2
00| F IZD == =

|

—_—

00 05 10 15 20 00 05 10 15 00 05 10 15 00 05 10 15 00 05 10 15
position position position position position
on-manifold test data
2.0

g
v

N[

—T

0
==\

g91ng
7 e 3 A'\ ‘1/-——- -'—'( :bf—'f\’_//

00 05 10 15 20 00 05 10 15 00 05 10 1 00 05 10 15 20
position position position position

velocity
o
o

o M 9N ow
A

} 7/ /

5




Analytic Manifold Learning : Latent Space Transfer P

““““““ s“?:%
g&%xé?“g;
9 5 : &
As baselines, we use two kinds of unsupervised learners: VAFE and it
PRED : asequential VAE that, given a sequence of frames x, ..., 7y,
constructs a predictive sequence X, ..., Ty

We learn AML relations on simulation states of a domain with
simple geometric shapes

Then, we train PRE D on the
target YCB-on-incline domain




Analytic Manifold Learning : Latent Space Transfer

AML relations are imposed on the latent state of PRE D by
augmenting the latent part of the loss as follows:

standard ELBO for PRE D version of VAE

Lot b=F # mure {—(1ng(l’1:T+L!%1:T+L)—KL(QHN(OJ)))

C](7'1:T+L|CU1:T)

+3 |9k (Frrer, @171 ]

~
impose AM L relations

T1.7+1 denotes a sample from approx. posterior ¢(71.7,1,|T1.7)
p(x1.7:1|T1.7+1) denotes the likelihood for PRE D

magenta color indicates that decoder outputs a predictive
sequence 1.7, 7, instead of a reconstruction 1.,

vvvvvvvvv
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The resulting AMLy;sy (AMLsy, with syzygies) 55 =.‘i@§:¢§hﬁ
gets a better latent state alignment B
. o . o~
for object position compared to VAFE and 5° |
. . . L

PRE D without AML relations imposed o g | v vaE

S © |-&— PRED

8 —d’t— AMLtrnsv

2o AL,

© o0 0.5 epochsl-0 1e3

AML also lowers distortion of the encoder map,

i.e. better preserves the geometry of the >3
low-dimensional manifold 5
Ed
©
dr2(Penc(®1)Penc(r2)) =
) — 1 L2\Penc ‘Yenc -
Pdistort og dro (Tifrueﬂ.%rue) .§ S
rirue 71 are the low-dim representations g ol
T1, Ty are the corresponding pixel-based representations

0.0 05 spgens 10 1e3



Current & Future Work: Lifelong Learning with AML Py

Consider an autonomous agent that has acquired

useful skills appropriate to a given environment

e.g. a household robot doing a set of household chores

Suppose this agent is transported to an
environment that has a different appearance,

but similar latent rules/regularities/relations

e.g a robot is moved to a different country to

perform similar household tasks




Current & Future Work: Lifelong Learning with AML
We would like the agent to:
- quickly adapt to new visual appearances

- leverage experience embedded in the latent space structure:

rules/regularities/relations inferred from previous experiences

- learn to infer new relations to better reshape the latent space,

and retain ability to quickly re-adapt to the original environment

vvvvvvvvv
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Current & Future Work: Lifelong Learning with AML Py
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Imposing learned relations helps retain latent space structure
when learning on the target domain

We can increase enc/dec learning rate =>

faster adaptation to changes in visual/high-dimensional aspects

fenc =T fdec
[ I
-

/=N 7= N




Current & Future Work: Lifelong Learning with AML

To let the latent space evolve/adapt:

We could introduce weights for each imposed relation and adapt them
(e.g. by propagating gradients through the weights)

We could suppress relations whose weights decay to zero
and could gradually expand the set by learning new relations

w191 + W9 + W3-g3 + ...
Wy-g1 + wy * go + W3-g3 + ...

w1-g1 + + w3-g3 + ...
w1-g1 + + Wig= g3 + «e-

+ Wk gk
+ Wk gk

+ Wk gk
+ Wk Gk + Wkt1° Gk+1

sssssssss




Current & Future Work: Lifelong Learning with AML Py
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[f we anticipate returning to the ‘old world’ but can’t store f* , fdec :
(large NNs)

we could keep all relations (small NNs), even with weights = 0 in the ‘new world’

and use the old set of relations+weights when we return to the ‘old world’

w101+ wWe-go + wW3-9g3 + ... + Wk gk

wi-g1+ 0-go+ w3-g3+ ... + Wi Gk + Wks1- k41

W1-g1 +We-go + W3-93 + ... + Wk gk




Future Work: Sim-to-real Hardware S,
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My previous works focused on making sure the algorithms were designed to
perform well on hardware, so I would like to ensure this for AML as well

WM Microsoft
B Research



http://www.youtube.com/watch?v=zgaAEJf9Oc4&t=78
http://www.youtube.com/watch?v=MlCabBaYw7E&t=151
http://www.youtube.com/watch?v=2SvdwGZNrvY&t=227

