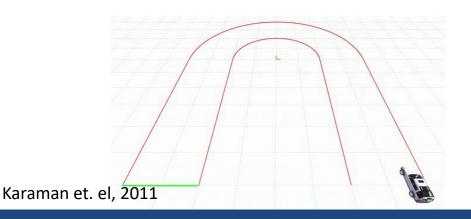
Motion Planning Networks

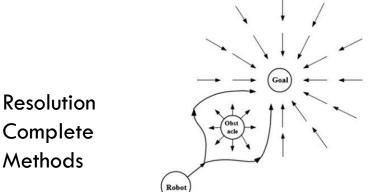
Ahmed Qureshi PhD Candidate, Electrical and Computer Engineering Contextual Robotics Institute University of California, San Diego <u>qureshiahmed.github.io</u>

Motion Planning

- Find a path that satisfies all constraints between the given start and goal configurations.
- Collision Avoidance
- Dynamics
- Kinematics (e.g., end-effector)

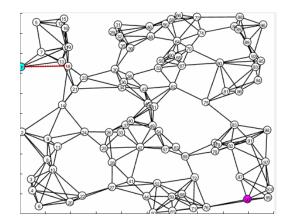


Common Strategies



Complete **Methods**

Artificial Potential Fields (Khatib, 86'), Cell Decomposition (Chazelle, 87')

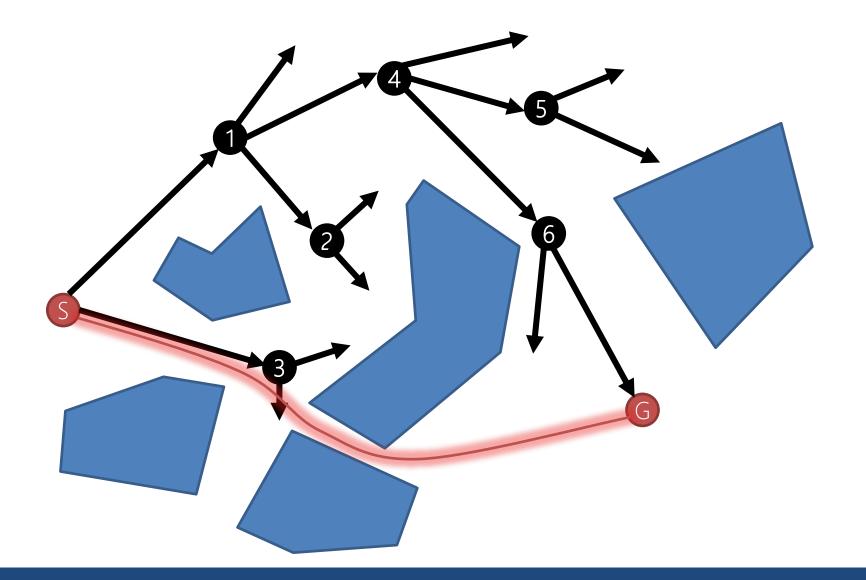


Visibility Graphs (Lozano-Perez, 79') Probabilistic Roadmaps (Kavraki, 96')

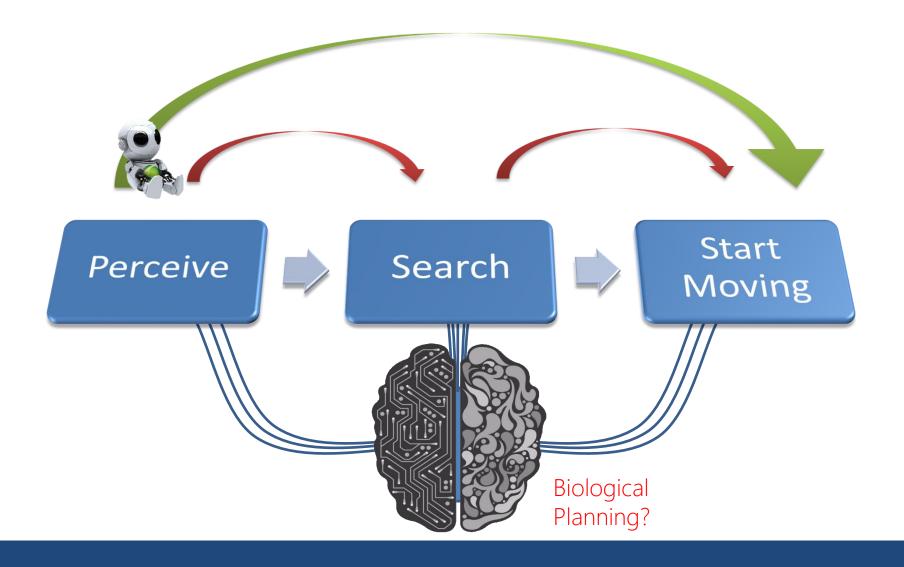
Sample-based **Planners**

RRT (LaValle, Kuffner, 98'), RRT* (Karaman, 2011)

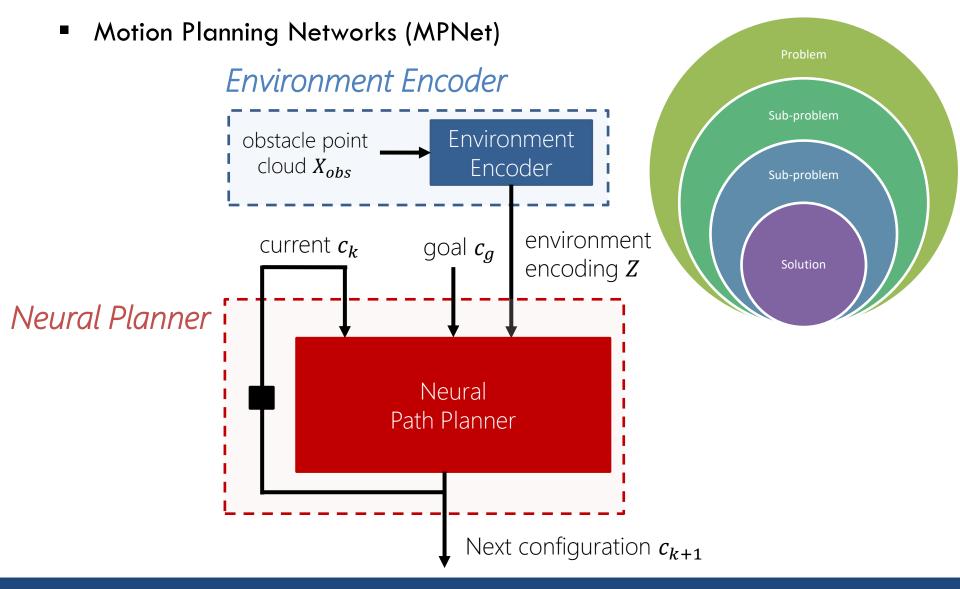
Motion Planning



Sequence in Robot Thinking



Neural Motion Planning



MPNet: Motion Planning Networks

Encoder Network (Enet):

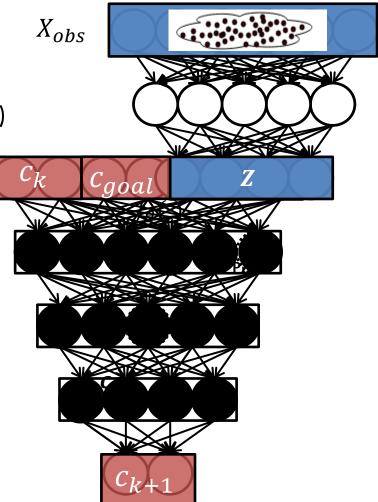
- Input: obstacles point cloud $x_{obs} \in \mathbb{R}^d$
- Output: Embedding $Z \in \mathbb{R}^m$
- 3D CNN (Preprocess point-cloud to voxel)
- Feed forward neural network

Planning Network (Pnet):

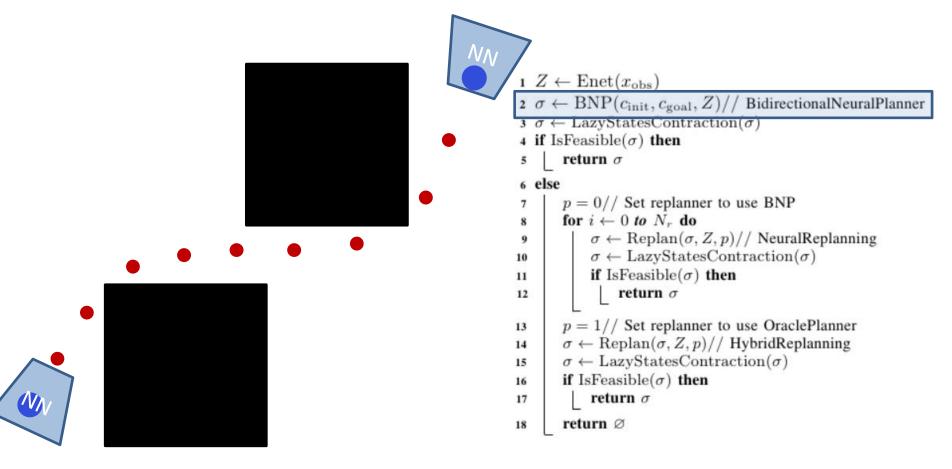
- Input: \mathbf{Z}, c_t, c_T
- Output: $\hat{c}_{t+1} \leftarrow \text{PNet}(c_t, c_T, Z)$
- Stochastic feed-forward neural network

Recursive Planning Algorithm:

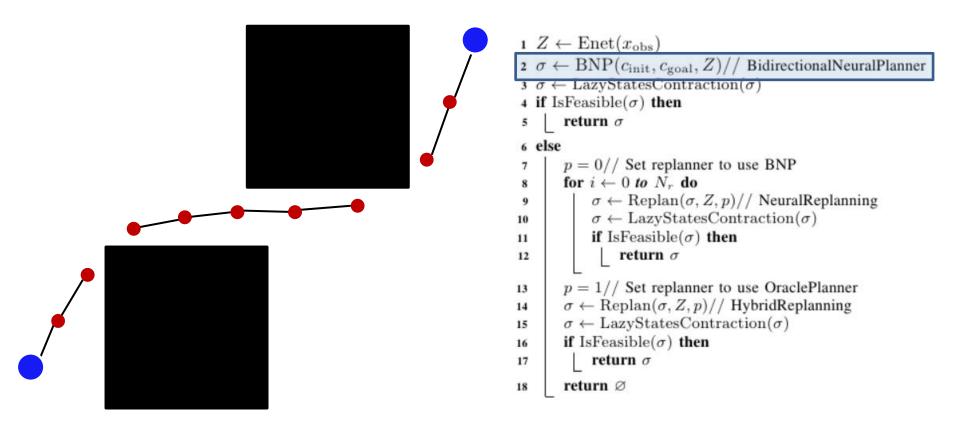
- End-to-end paths or informed samples
- Worst-case theoretical guarantees



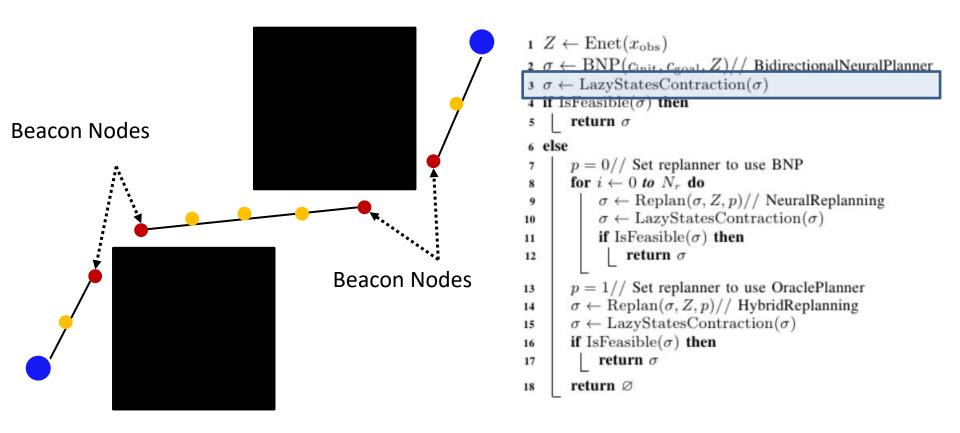
- Find critical states between given start and goal using MPNet.
- Create a coarse plan.

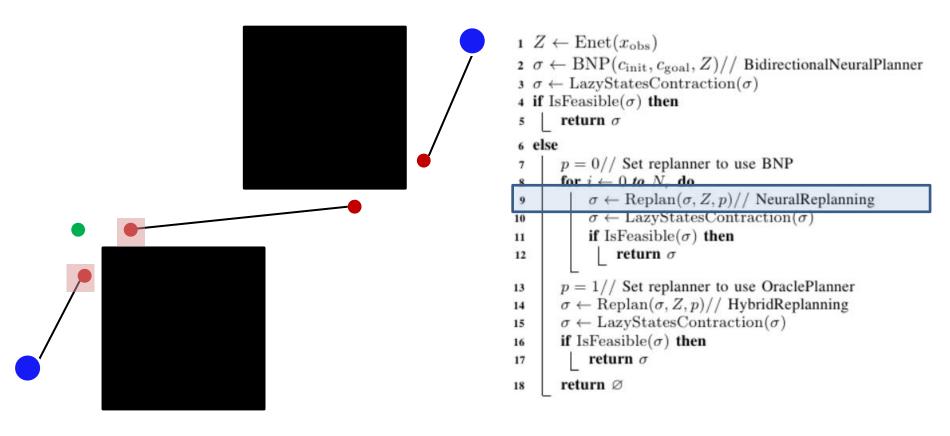


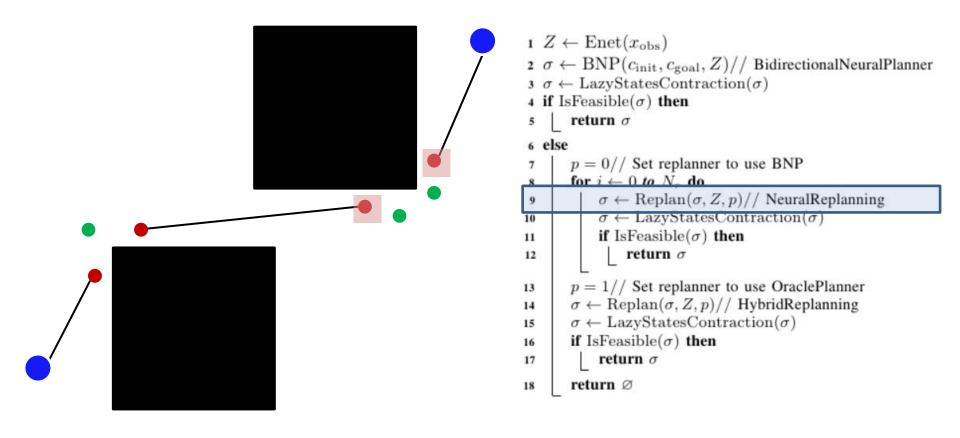
- Find critical states between given start and goal using MPNet.
- Create a coarse plan.

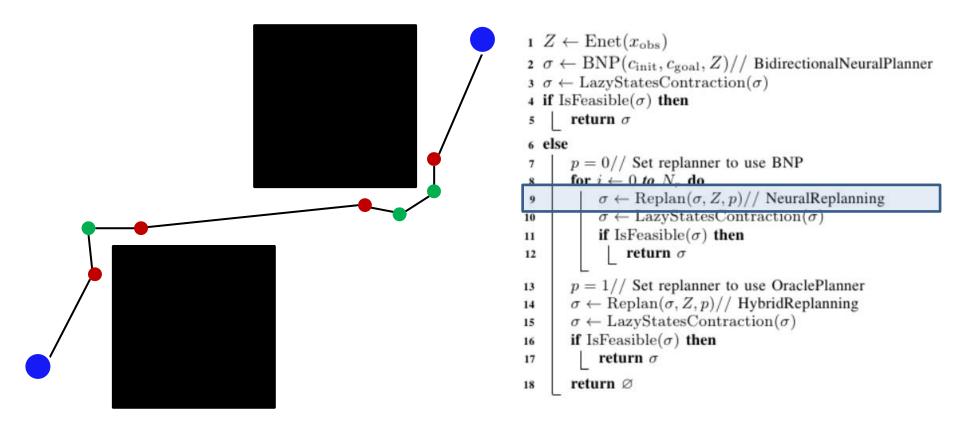


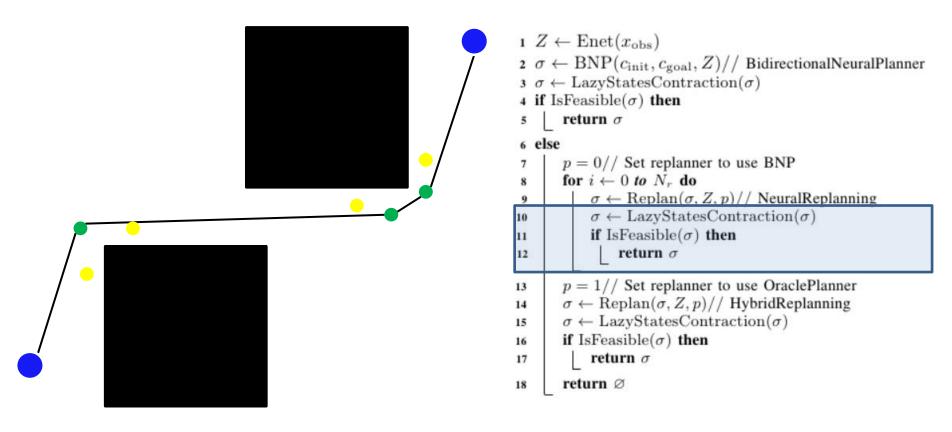
- Remove redundant states (branch-and-bound).
- Identify beacon states.



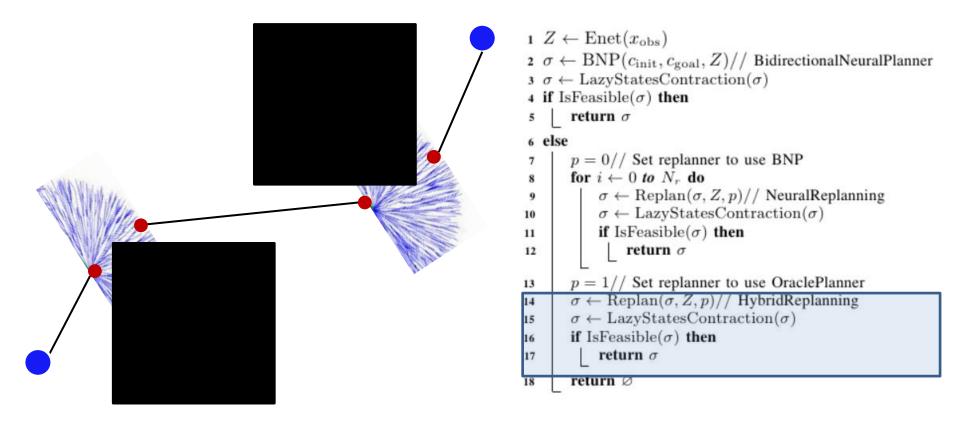




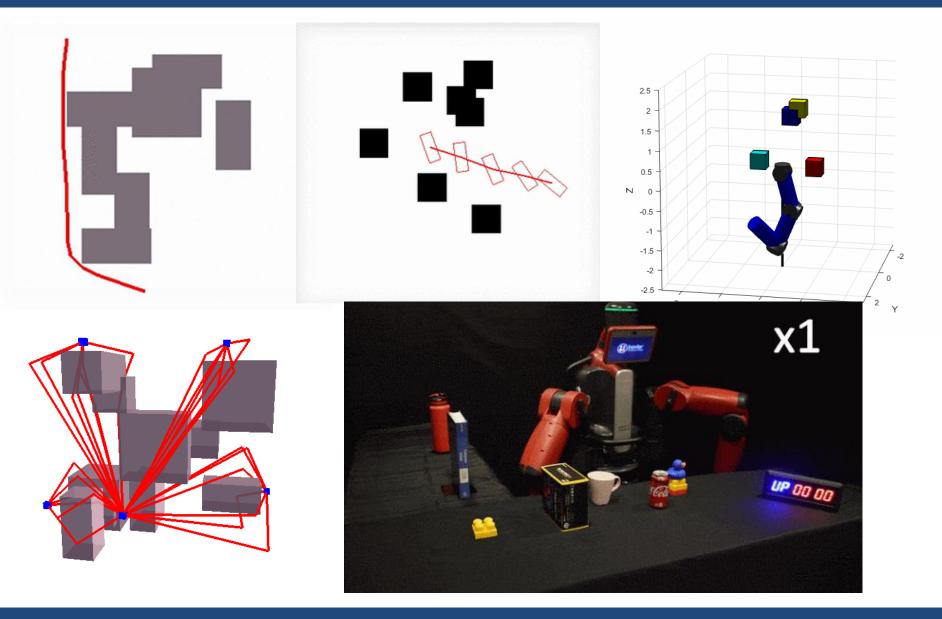




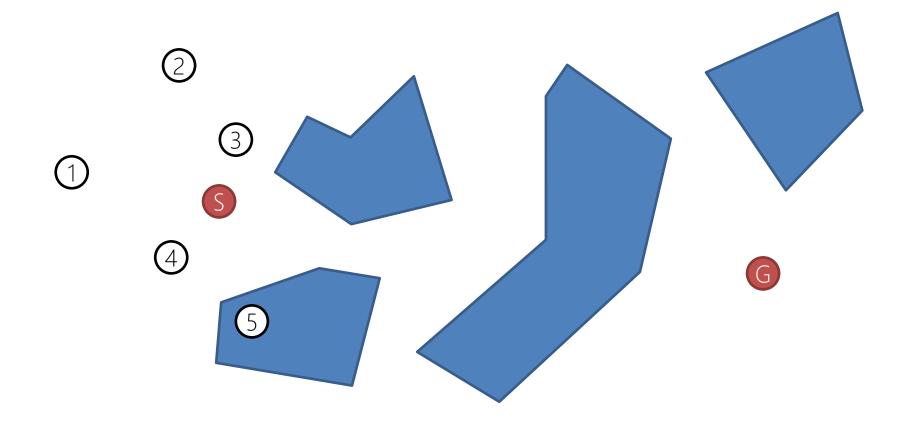
- Hybrid replanning: Combines MPNet with classical planners.
 - Outsource a segment of a planning problem to a classical planner.

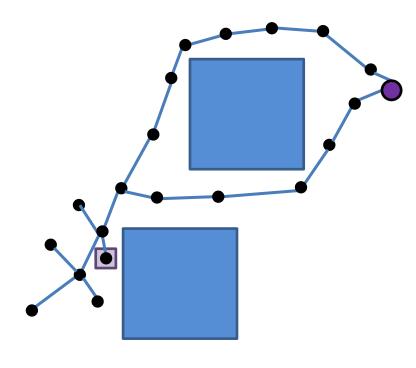


Visualizations



But what if we wanted to use this not to find the solution but make informed choices?





1
 Initialize
$$T \leftarrow SMP(c_{init}, c_{goal}, x_{obs})$$

 2
 $c_{rand} \leftarrow c_{init}$

 3
 $Z \leftarrow Enet(x_{obs})$

 4
 for $i \leftarrow 0$ to n do

 5
 if $i < N_{smp}$ then

 6
 $\lfloor c_{rand} \leftarrow MPNet(Z, c_{rand}, c_{goal})$

 7
 else

 8
 $\lfloor c_{rand} \leftarrow RandomSampler()$

 9
 $c_{nearest} \leftarrow Nearest(c_{rand}, T)$

 10
 if Steer(c_{nearest}, c_{rand}) then

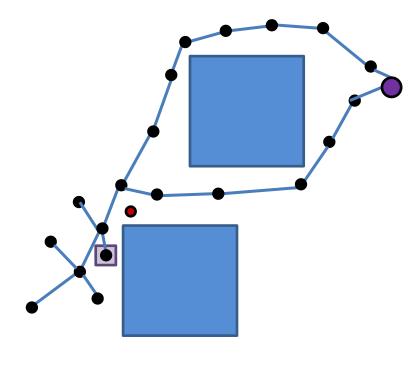
 11
 $C_{near} \leftarrow Near(c_{rand}, T)$

 12
 $T \leftarrow Rewire(T, C_{near}, c_{rand})$

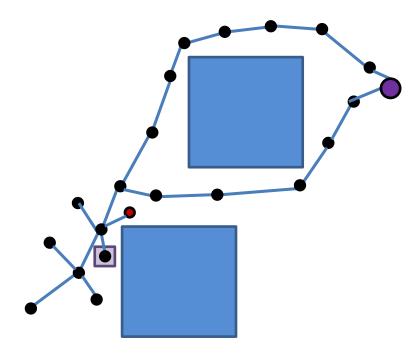
 13
 if $c_{rand} \in c_{goal}$ then

 14
 $\lfloor c_{rand} \leftarrow c_{init}$

Lattalian The CMD



1 Initialize $T \leftarrow \text{SMP}(c_{\text{init}}, c_{\text{goal}}, \mathcal{X}_{\text{obs}})$ 2 $c_{\text{rand}} \leftarrow c_{\text{init}}$ $z \in \text{Enet}(x_{\text{obs}})$ 4 for $i \leftarrow 0$ to n do if $i < N_{\rm smp}$ then 5 $c_{\text{rand}} \leftarrow \text{MPNet}(Z, c_{\text{rand}}, c_{\text{goal}})$ 6 else 7 $c_{\text{rand}} \leftarrow \text{RandomSampler}()$ 8 $c_{\text{nearest}} \leftarrow \text{Nearest}(c_{\text{rand}}, T)$ 9 if $Steer(c_{nearest}, c_{rand})$ then 10 $C_{\text{near}} \leftarrow \text{Near}(c_{\text{rand}}, T)$ $T \leftarrow \text{Rewire}(T, C_{\text{near}}, c_{\text{rand}})$ 11 12 if $c_{\text{rand}} \in c_{\text{goal}}$ then 13 $c_{\text{rand}} \leftarrow c_{\text{init}}$ 14 15 return ∅



1
 Initialize
$$T \leftarrow SMP(c_{init}, c_{goal}, \mathcal{X}_{obs})$$

 2
 $c_{rand} \leftarrow c_{init}$

 3
 $Z \leftarrow Enet(x_{obs})$

 4
 for $i \leftarrow 0$ to n do

 5
 if $i < N_{smp}$ then

 6
 $\lfloor c_{rand} \leftarrow MPNet(Z, c_{rand}, c_{goal})$

 7
 else

 8
 $\lfloor c_{rand} \leftarrow RandomSampler()$

 9
 $c_{nearest} \leftarrow Nearest(c_{rand}, T)$

 10
 if Steer(c_{nearest}, c_{rand}) then

 11
 $C_{near} \leftarrow Near(c_{rand}, T)$

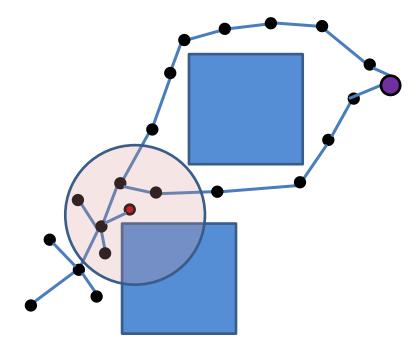
 12
 L $C_{rand} \in c_{goal}$ then

 14
 L $c_{rand} \leftarrow c_{init}$

 15
 return \emptyset

2

Luide Rea The CMD



1 Initialize
$$T \leftarrow SMP(c_{init}, c_{goal}, \mathcal{X}_{obs})$$

 2 $c_{rand} \leftarrow c_{init}$

 3 $Z \leftarrow Enet(x_{obs})$

 4 for $i \leftarrow 0$ to n do

 5
 if $i < N_{smp}$ then

 6
 $\lfloor c_{rand} \leftarrow MPNet(Z, c_{rand}, c_{goal})$

 7
 else

 8
 $\lfloor c_{rand} \leftarrow RandomSampler()$

 9
 $c_{nearest} \leftarrow Nearest(c_{rand}, T)$

 10
 if Steer(c_{nearest}, c_{rand}) then

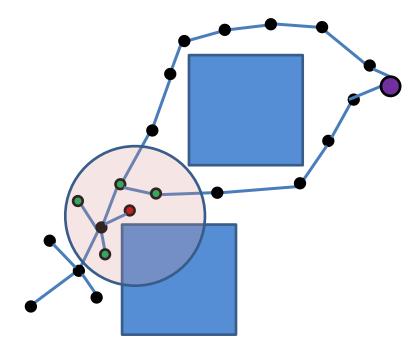
 11
 $C_{near} \leftarrow Near(c_{rand}, T)$

 12
 $T \leftarrow Rewire(T, C_{near}, c_{rand})$

 13
 if $c_{rand} \in c_{goal}$ then

 14
 $\lfloor c_{rand} \leftarrow c_{init}$

 15
 return \emptyset



1
 Initialize
$$T \leftarrow SMP(c_{init}, c_{goal}, x_{obs})$$

 2
 $c_{rand} \leftarrow c_{init}$

 3
 $Z \leftarrow Enet(x_{obs})$

 4
 for $i \leftarrow 0$ to n do

 5
 if $i < N_{smp}$ then

 6
 $\lfloor c_{rand} \leftarrow MPNet(Z, c_{rand}, c_{goal})$

 7
 else

 8
 $\lfloor c_{rand} \leftarrow RandomSampler()$

 9
 $c_{nearest} \leftarrow Nearest(c_{rand}, T)$

 10
 if Steer(c_{nearest}, c_{rand}) then

 11
 $C_{near} \leftarrow Near(c_{rand}, T)$

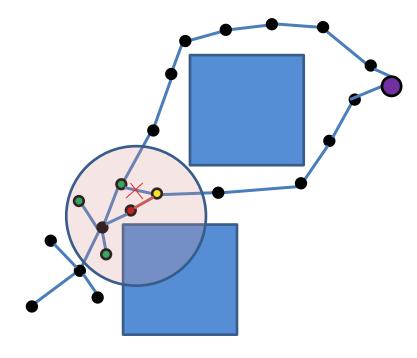
 12
 $T \leftarrow Rewire(T, C_{near}, c_{rand})$

 13
 if $c_{rand} \in c_{goal}$ then

 14
 $\lfloor c_{rand} \leftarrow c_{init}$

 15
 return \emptyset

Initialize T (SMD (



1
 Initialize
$$T \leftarrow SMP(c_{init}, c_{goal}, \mathcal{A}_{obs})$$

 2
 $c_{rand} \leftarrow c_{init}$

 3
 $Z \leftarrow Enet(x_{obs})$

 4
 for $i \leftarrow 0$ to n do

 5
 if $i < N_{smp}$ then

 6
 $\lfloor c_{rand} \leftarrow MPNet(Z, c_{rand}, c_{goal})$

 7
 else

 8
 $\lfloor c_{rand} \leftarrow RandomSampler()$

 9
 $c_{nearest} \leftarrow Nearest(c_{rand}, T)$

 10
 if Steer(c_{nearest}, c_{rand}) then

 11
 $C_{near} \leftarrow Near(c_{rand}, T)$

 12
 $T \leftarrow Rewire(T, C_{near}, c_{rand})$

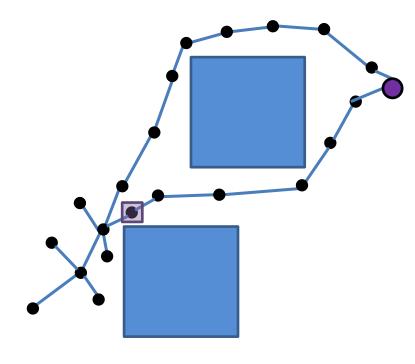
 13
 if $c_{rand} \in c_{goal}$ then

 14
 $\lfloor c_{rand} \leftarrow c_{init}$

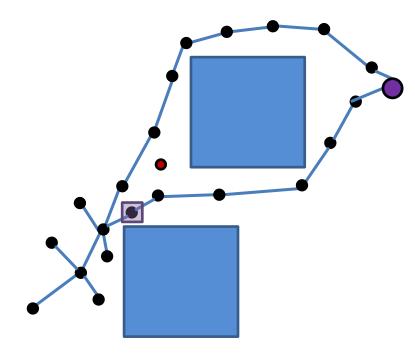
 15
 return \emptyset

22

Luide Rea The CMD



1 Initialize $T \leftarrow \text{SMP}(c_{\text{init}}, c_{\text{goal}}, \mathcal{X}_{\text{obs}})$ 2 $c_{\text{rand}} \leftarrow c_{\text{init}}$ $\mathbf{3} \ Z \leftarrow \operatorname{Enet}(x_{\operatorname{obs}})$ 4 for $i \leftarrow 0$ to n do if $i < N_{emp}$ then $c_{\text{rand}} \leftarrow \text{MPNet}(Z, c_{\text{rand}}, c_{\text{goal}})$ 6 else 7 $c_{\text{rand}} \leftarrow \text{RandomSampler}()$ 8 $c_{\text{nearest}} \leftarrow \text{Nearest}(c_{\text{rand}}, T)$ 9 if $Steer(c_{nearest}, c_{rand})$ then 10 $C_{\text{near}} \leftarrow \text{Near}(c_{\text{rand}}, T)$ $T \leftarrow \text{Rewire}(T, C_{\text{near}}, c_{\text{rand}})$ 11 12 if $c_{\text{rand}} \in c_{\text{goal}}$ then 13 $c_{\text{rand}} \leftarrow c_{\text{init}}$ 14 15 return ∅



1 Initialize
$$T \leftarrow SMP(c_{init}, c_{goal}, \mathcal{X}_{obs})$$

 2 $c_{rand} \leftarrow c_{init}$

 3 $Z \leftarrow Enet(x_{obs})$

 4 for $i \leftarrow 0$ to n do

 5 if $i < N_{smp}$ then

 6 $c_{rand} \leftarrow MPNet(Z, c_{rand}, c_{goal})$

 7 else

 8 $c_{rand} \leftarrow RandomSampler()$

 9 $c_{nearest} \leftarrow Nearest(c_{rand}, T)$

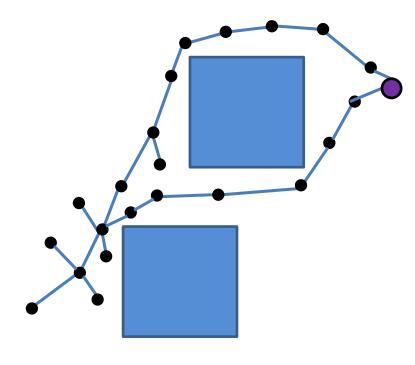
 10 if Steer(c_{nearest}, c_{rand}) then

 11 $C_{near} \leftarrow Near(c_{rand}, T)$

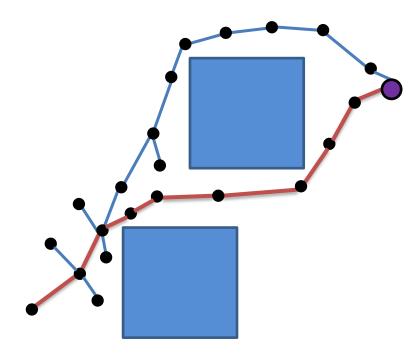
 12 $C_{rand} \in c_{goal}$ then

 14 $c_{rand} \in c_{goal}$ then

 15 return \emptyset



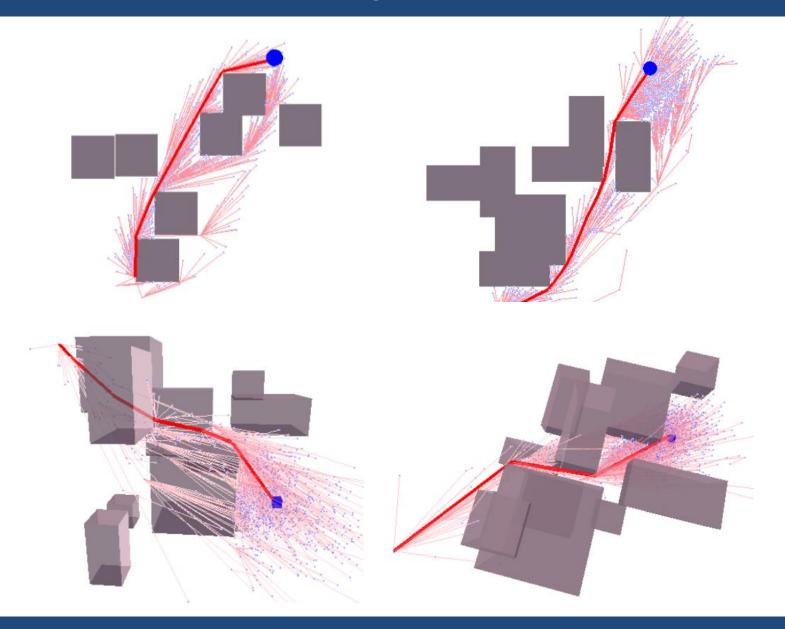
1 Initialize $T \leftarrow \text{SMP}(c_{\text{init}}, c_{\text{goal}}, \mathcal{X}_{\text{obs}})$ 2 $c_{\text{rand}} \leftarrow c_{\text{init}}$ $\mathbf{3} \ Z \leftarrow \operatorname{Enet}(x_{\operatorname{obs}})$ 4 for $i \leftarrow 0$ to n do if $i < N_{emp}$ then $c_{\text{rand}} \leftarrow \text{MPNet}(Z, c_{\text{rand}}, c_{\text{goal}})$ 6 else 7 $c_{\text{rand}} \leftarrow \text{RandomSampler}()$ 8 $c_{\text{nearest}} \leftarrow \text{Nearest}(c_{\text{rand}}, T)$ 9 if $Steer(c_{nearest}, c_{rand})$ then 10 $C_{\text{near}} \leftarrow \text{Near}(c_{\text{rand}}, T)$ $T \leftarrow \text{Rewire}(T, C_{\text{near}}, c_{\text{rand}})$ 11 12 if $c_{\text{rand}} \in c_{\text{goal}}$ then 13 $c_{\text{rand}} \leftarrow c_{\text{init}}$ 14 15 return ∅



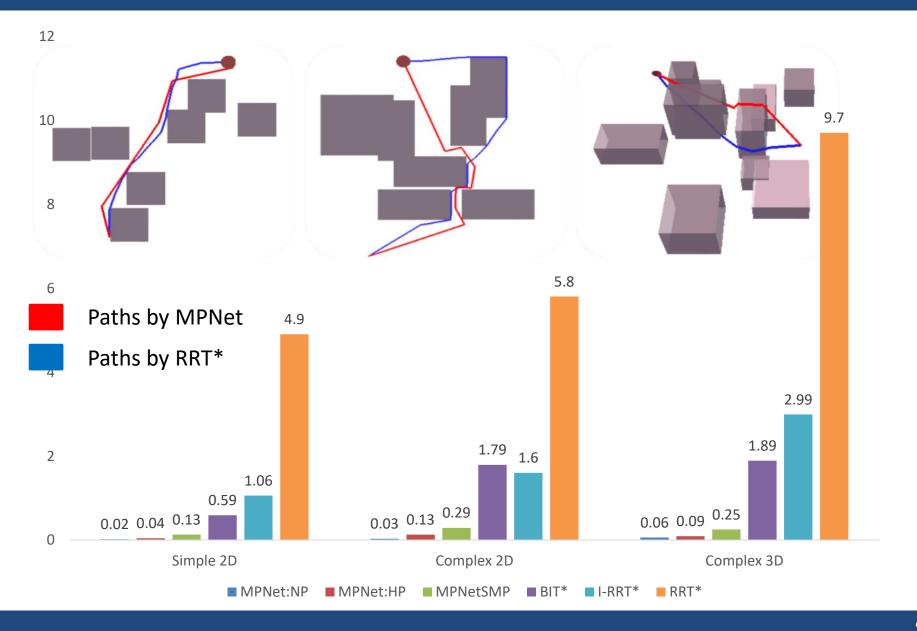
1 Initialize
$$T \leftarrow \text{SMP}(c_{\text{init}}, c_{\text{goal}}, \mathcal{X}_{\text{obs}})$$

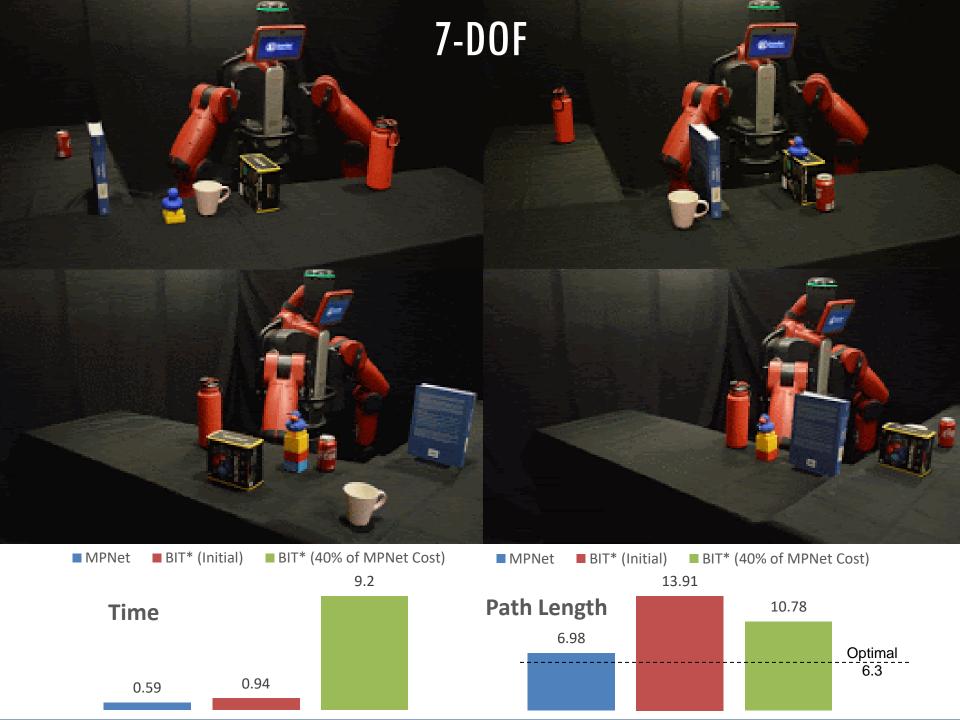
2 $c_{\text{rand}} \leftarrow c_{\text{init}}$
3 $Z \leftarrow \text{Enet}(x_{\text{obs}})$
4 for $i \leftarrow 0$ to n do
5 $|$ if $i < N_{\text{smp}}$ then
6 $|$ $c_{\text{rand}} \leftarrow \text{MPNet}(Z, c_{\text{rand}}, c_{\text{goal}})$
7 else
8 $|$ $c_{\text{rand}} \leftarrow \text{RandomSampler}()$
9 $c_{\text{nearest}} \leftarrow \text{Nearest}(c_{\text{rand}}, T)$
10 if Steer($c_{\text{nearest}}, c_{\text{rand}}$) then
11 $|$ $C_{\text{near}} \leftarrow \text{Near}(c_{\text{rand}}, T)$
12 $|$ $T \leftarrow \text{Rewire}(T, C_{\text{near}}, c_{\text{rand}})$
13 $|$ if $c_{\text{rand}} \in c_{\text{goal}}$ then
14 $|$ $c_{\text{rand}} \leftarrow c_{\text{init}}$
15 return \emptyset

Informed Sampling Visualization



Results





Summary of Results

End-to-end collision-free paths with minimal-to-no branching

- Significantly faster than state of art in challenging environments
- Significantly less variance in time-to-completion.
- Near-optimal path length

Decompose planning problems into sub-problems.

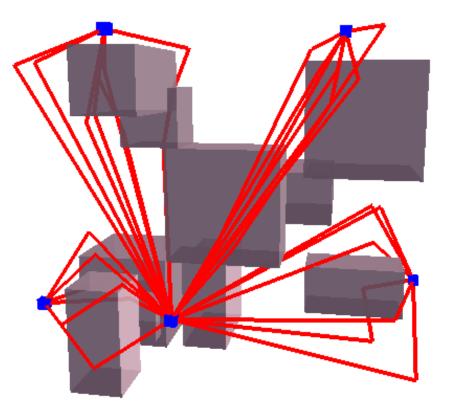
- Allows easy integration with standard planners.
 - retains computational benefits with completeness guarantees.

Can learn from streaming data

- Can actively ask for demonstrations only when needed.
- Reduced data for learning
- minimizes catastrophic forgetting

Validated on variety of environments

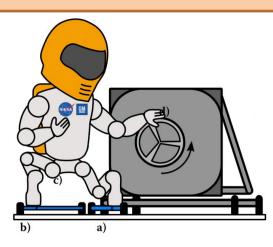
Seen and unseen environments from 2 to 7DOF.

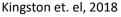


MPNET: EXTENSIONS

Motion Planning

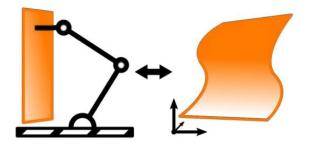
- Find a path that satisfies all constraints between the given start and goal configurations.
- Collision Avoidance
- Kinematics (e.g., end-effector)
- Dynamics



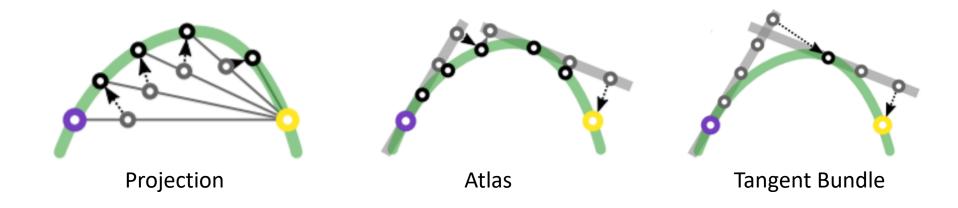


Motion Planning under Kinematic Constraints

- Bi-RRT & Constraint-adherence approaches
 - CBiRRT: Projection [1]
 - Atlas-RRT: Atlas [2]
 - TB-RRT: Tangent Bundle [3]

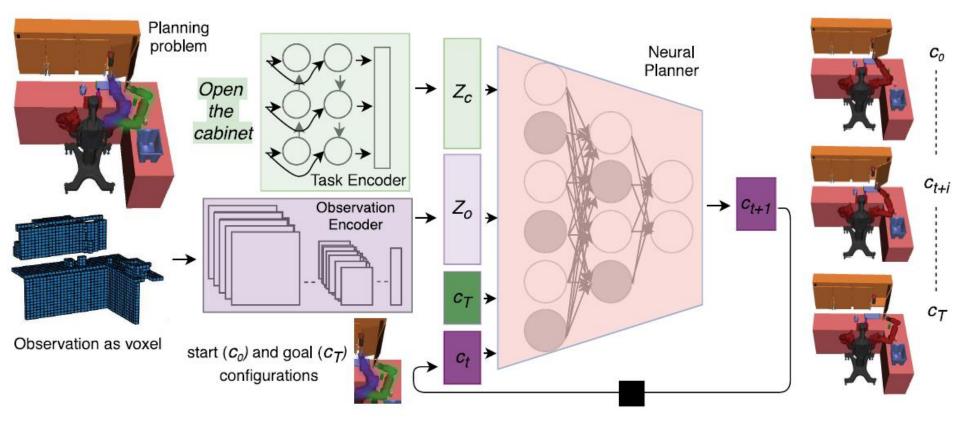


Kingston et. el, 2018, 2019



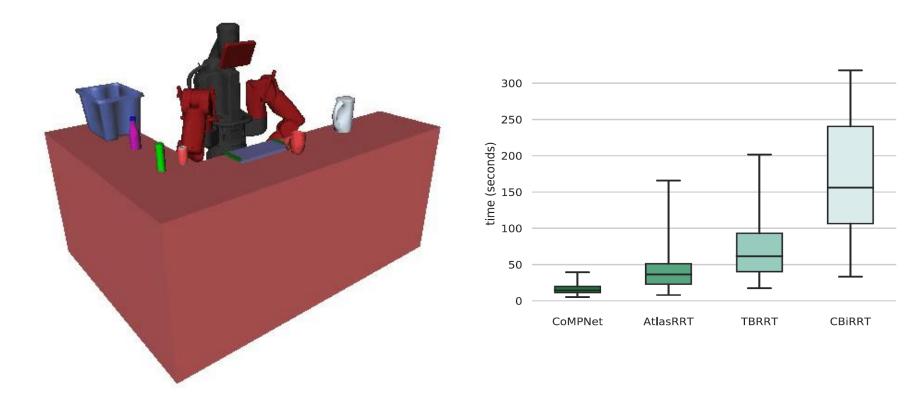
Berenson et. el. (2011). Task space regions: A framework for pose-constrained manipulation planning, IJRR.
 Jaillet & Porta (2012). Path planning under kinematic constraints by rapidly exploring manifolds. IEEE TRO.
 Kim et. el. (2016). Tangent bundle RRT: A randomized algorithm for constrained motion planning. *Robotica*.

Constrained Motion Planning Networks

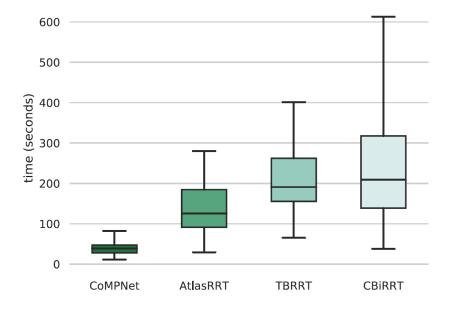


Qureshi et. el, Neural Manipulation Planning on the Constrained Manifolds, RAL 2020.

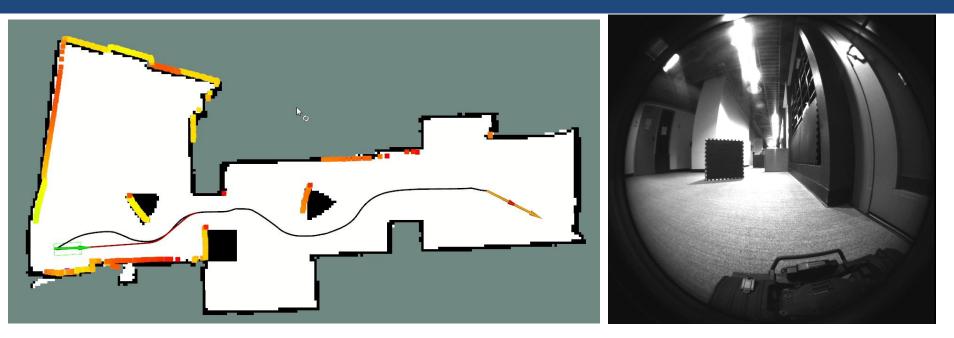
CoMPNet: Results



CoMPNet: Results



Dynamically Constrained Motion Planning Networks



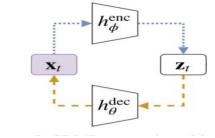
Real-time planning with egocentric maps

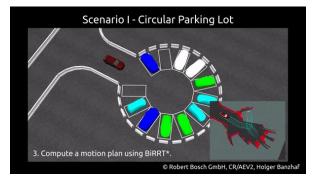
- Generates samples that satisfy non-holonomic constraints
- Provide local planner plugin for ROS navigation stack
 - https://github.com/jacobjj/mpnet_local_planner

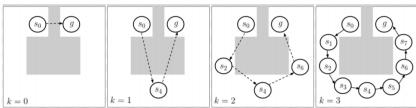
J. Johnson et. el, <u>Dynamically Constrained Motion Planning Networks for Non-Holonomic Robots</u>, IROS2020.

Extensions to Motion Planning Networks / Neural Planning

- Planning in Learned Latent Spaces –
 Ichter and Pavone. RAL 4.3 (2019): 2407-2414.
- Sampling-based ego-poses for planning motions of nonholonomic vehicles – Banzhaf, et al. RAL 4.2 (2019): 1053-1060.
- Subgoal Trees Jurgenson, Groshev, Tamar." ICML (2019).
- Harnessing Reinforcement Learning for Neural Motion Planning – Jurgenson, Tamar." RSS (2019).







Publications

[1] **A.H.Qureshi**, Y.Miao, A.Simeonov, and M.C.Yip. "Motion Planning Networks: Bridging the Gap Between Learning-based and Classical Motion Planners", *IEEE Transactions on Robotics (TRO)*, 2020.

[3] **A.H.Qureshi**, A.Simeonov, M.J.Bency, M.C.Yip. "Motion Planning Networks", *IEEE/RAS International Conference on Robotics and Automation (ICRA)*, pp. 2118-2124, Montreal, Canada 2019.

[4] **A.H.Qureshi** and Michael.C.Yip . "Deeply Informed Neural Sampling For Robot Motion Planning", *Proceedings of IEEE/RSJ International Conference on Intelligent Robot and Systems* (*IROS*), pp. 6582-6588, Madrid, Spain 2018.

[5] **A.H.Qureshi**, J.Dong, A.Choe, and M.C.Yip. "Neural Manipulation Planning on Constraints Manifolds", *IEEE Robotics and Automation Letters (RAL)*, 2020.

[5] J.Johnson, L.Jun, F.Liu, **A.H.Qureshi** and M.C.Yip. "Dynamically Constrained Motion Planning Networks for Non-Holonomic Robots", *IEEE IROS*, 2020.

THANK YOU