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Find a path that satisfies all 

constraints between the given 

start and goal configurations.

▪ Collision Avoidance

▪ Dynamics

▪ Kinematics (e.g., end-effector)

Karaman et. el, 2011

Motion Planning



Common Strategies
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Sample-based 

Planners

RRT (LaValle, Kuffner, 98’), RRT* (Karaman, 2011)

Resolution 

Complete 

Methods

Artificial Potential Fields (Khatib, 86’), Cell 

Decomposition (Chazelle, 87’)
Visibility Graphs (Lozano-Perez, 79’)

Probabilistic Roadmaps (Kavraki, 96’)



Motion Planning
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Sequence in Robot Thinking
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Biological 

Planning?



▪ Motion Planning Networks (MPNet)

Neural Motion Planning
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MPNet: Motion Planning Networks
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Encoder Network (Enet):

▪ Input: obstacles point cloud 𝒙𝒐𝒃𝒔 ∈ ℝ𝒅

▪ Output: Embedding Z ∈ ℝ𝒎

▪ 3D CNN (Preprocess point-cloud to voxel)

▪ Feed forward neural network

Planning Network (Pnet):

▪ Input: 𝐙, 𝒄𝒕, 𝒄𝑻
▪ Output: ො𝒄𝒕+𝟏 ← 𝐏𝐍𝐞𝐭(𝒄𝒕, 𝒄𝑻, 𝒁)

▪ Stochastic feed-forward neural network

Recursive Planning Algorithm:

▪ End-to-end paths or informed samples

▪ Worst-case theoretical guarantees



▪ Find critical states between given start and goal using MPNet.

▪ Create a coarse plan.

MPNet: Recursive Bidirectional Neural Planning
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▪ Find critical states between given start and goal using MPNet.

▪ Create a coarse plan.

MPNet: Recursive Bidirectional Neural Planning
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▪ Remove redundant states (branch-and-bound).

▪ Identify beacon states.

MPNet: Recursive Bidirectional Neural Planning
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Beacon Nodes

Beacon Nodes



▪ Replan between beacon states with MPNet

(Divide and conquer approach)

MPNet: Recursive Bidirectional Neural Planning
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▪ Replan between beacon states with MPNet

(Divide and conquer approach)

MPNet: Recursive Bidirectional Neural Planning
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▪ Replan between beacon states with MPNet

(Divide and conquer approach)

MPNet: Recursive Bidirectional Neural Planning
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▪ Replan between beacon states with MPNet

(Divide and conquer approach)

MPNet: Recursive Bidirectional Neural Planning
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▪ Hybrid replanning: Combines MPNet with classical planners.

▪ Outsource a segment of a planning problem to a classical 

planner.

MPNet: Recursive Bidirectional Neural Planning
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Visualizations
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Informed Sampling

But what if we wanted to use this not to find the solution but make 

informed choices?
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MPNet: Informed Sampling
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MPNet: Informed Sampling

19



MPNet: Informed Sampling
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MPNet: Informed Sampling
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MPNet: Informed Sampling
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MPNet: Informed Sampling
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Informed Sampling
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Informed Sampling
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Informed Sampling
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Informed Sampling
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Informed Sampling Visualization
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Paths by MPNet

Paths by RRT*
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End-to-end collision-free paths with minimal-to-no branching

▪ Significantly faster than state of art in challenging environments

▪ Significantly less variance in time-to-completion.

▪ Near-optimal path length

Decompose planning problems into sub-problems.

▪ Allows easy integration with standard planners.

▪ retains computational benefits with completeness guarantees.

Can learn from streaming data

▪ Can actively ask for demonstrations only when needed.

▪ Reduced data for learning

▪ minimizes catastrophic forgetting

Validated on variety of environments

▪ Seen and unseen environments from 2 to 7DOF.

Summary of  Results
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MPNET: EXTENSIONS
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Find a path that satisfies all 

constraints between the given 

start and goal configurations.

▪ Collision Avoidance

▪ Kinematics (e.g., end-effector)

▪ Dynamics

Motion Planning

Kingston et. el, 2018
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▪ Bi-RRT & Constraint-adherence approaches
▪ CBiRRT: Projection [1]
▪ Atlas-RRT: Atlas [2]
▪ TB-RRT: Tangent Bundle [3]

Projection Atlas Tangent Bundle

[1] Berenson et. el. (2011). Task space regions: A framework for pose-constrained manipulation planning, IJRR.

[2] Jaillet & Porta (2012). Path planning under kinematic constraints by rapidly exploring manifolds. IEEE TRO.

[3] Kim et. el. (2016). Tangent bundle RRT: A randomized algorithm for constrained motion planning. Robotica.

Kingston et. el, 2018, 2019

Motion Planning under Kinematic Constraints
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Constrained Motion Planning Networks

Qureshi et. el, Neural Manipulation Planning on the Constrained Manifolds, RAL 2020.
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CoMPNet: Results
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CoMPNet: Results



Dynamically Constrained Motion Planning Networks
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▪ Real-time planning with egocentric maps

▪ Generates samples that satisfy non-holonomic constraints

▪ Provide local planner plugin for ROS navigation stack

▪ https://github.com/jacobjj/mpnet_local_planner

J. Johnson et. el, Dynamically Constrained Motion Planning Networks for Non-Holonomic Robots, IROS2020.

Jacob Johnson



▪ Planning in Learned Latent Spaces –

Ichter and Pavone. RAL 4.3 (2019): 2407-2414.

▪ Sampling-based ego-poses for planning 

motions of nonholonomic vehicles –

Banzhaf, et al. RAL 4.2 (2019): 1053-1060.

▪ Subgoal Trees – Jurgenson, Groshev, 

Tamar." ICML (2019).

▪ Harnessing Reinforcement Learning for Neural 

Motion Planning – Jurgenson, 

Tamar." RSS (2019).

Extensions to Motion Planning Networks / Neural Planning
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