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What is inverse reinforcement learning?

Given access to trajectories generated from an expert, can a reward function be learned 
that induces the same behaviour as the expert?

 a form of imitation learning

How is this different than the previous forms of RL we’ve seen before?



http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_12_irl.pdf

What is inverse reinforcement learning?

http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_12_irl.pdf


Difficulties with IRL
Ill posed problem – no unique set of weights describing the optimal behaviour

 Different policies may be optimal for different reward weights (even when it’s all
zeros!) 

 Which policy is preferable?

 Match feature expectations [Abbeel & Ng, 2004]

 No clear way to handle multiple policies

 Use maximum margin planning [Ratliff, Bagnell, Zinkevich 2006] 

 Maximize margin between reward of expert to the reward of the best agent policy plus 
some similarity measure 

 Suffers in the presence of an sub - optimal expert, as no reward function makes the agent 
optimal and significantly better than any observed behaviour



Researcher’s Contribution 

 Created the Maximum Entropy IRL (MaxEnt) framework

 Provided an algorithmic approach to handle uncertainties in actions 

 Efficient Dynamic Programming algorithm
 case study of predicting driver’s behaviour
 prior work in this application was inefficient [Liao et al, 2007]
 largest IRL experiment in terms of data set size at the time (2008)



Why use Max Entropy?

 Principle of Max Entropy [Janyes 1957] – demonstrates that the best distribution over 
current information is one with the largest entropy

 
 Prevents issues with label bias

 Portions of state space with many branches will each be biased to being less likely, and
while areas with fewer branches will have higher probabilities (locally greedy) 

 The consequences of label bias is:

1)the most rewarding path being not the most likely

2)two different but equally rewarded paths with different probability



Problem Set-Up

 Agent is optimizing a reward function that linearly maps the features of each state f
s 
in 

the path ζ to a state reward value. 

 Reward is parameterized by the weights θ:

 Expected empirical feature counts based on m demonstrations :



 

 Reward function uses a Boltzmann distribution

 Above formulation assumes deterministic MDP’s

ζ – path (must be finite for Z(θ) to converge, or use discounted rewards for infinite paths)  

θ - reward weights

Z(θ) – partition function, normalization value

Algorithm Set-Up



Algorithm Set-Up

Observations here are introduced to make the stochastic MDP deterministic given previous 
state distributions

 Two further simplifications are made:

 The partition function is constant for all outcome samples

 Transition randomness doesn’t affect behaviour 

o – outcome sample

T – Transition distribution



Maximum Likelihood Estimation

 Use the maximize likelihood of observing expert data for θ as the cost function for θ

 convex for deterministic MDPs

 intuitively can be understood as difference in agent’s empirical feature counts, and the 
expert’s expected feature counts

● Used sample based approach to compute expert’s feature counts 



 

1) Start from a terminal state
2) Compute the partition function at each state and action to obtain local action probabilities 
3) Compute state frequencies at each time step
4) Sum over agent’s state frequency all time steps
5)This is similar to value iteration!



Experimental Set-Up

 The researchers were trying to investigate if a reward function for predicting driving 
behaviour could be recovered. 

 Modelled road network as an MDP

 Due to different start and end positions, each trip’s MDP is slightly different

 Because of differing MDP’s reward weight are treated as independent of the goal, so a 
single set of weights θ can be learned from many different MDP’s



Dataset Details

 Collected driving data of 100,000 miles spanning 3,000 driving hours for Pittsburgh

 Fitted GPS data to the road network, to generate ~13,000 road trips

 Discarded noisy trips, or trips that were too short (less than 10 road segments)

 This was done to speed up computation time



Path Features

Four different road aspects considered:

 Road type: interstate to local road

 Speed: high speed to low speed,

 Lanes: multi-lane or single lane

 Transitions: straight, left, right, hard left, hard right

There was a total of 22 features used to represent this state



Results

Time Based:  Based on expected travel time, weights the cost of a unit distance of road to be 
inversely proportional to the speed of the road

Max Margin: maximize margin between reward of expert to the reward of the best agent 
policy plus some similarity measure  

Action: Locally probabilistic Bayesian IRL model

Action (cost): – lowest cost path from the weights predicted from the action model 

Model % Matching % >90% Match Log Prob Reference

Time- Based 72.38 43.12 N/A n/a

Max Margin 75.29 46.56 N/A [Ratliff, Bagnell, & Zinkevich, 2006]

Action 77.30 50.37 -7.91 [Ramchandran & Amir 2007]

Action (Cost) 77.74 50.75 N/A [Ramchandran & Amir 2007]

MaxEnt 78.79 52.98 -6.85 [Zeibart et al. 2008]



Discussion

 Ability to remove label bias which is present in locally greedy action based 
distributional models

 MaxEnt gives all paths equal probability due to equal reward

 Action based paths (weighted on future expected rewards) look only locally to 
determine possible paths

 P(A->B) != P(B->A)
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Discussion

The model learns to penalize slow roads and trajectories with many short paths



Discussion

It is possible to infer driving behaviour from partially observable paths with Bayes’ 
Theorem

P (B∣A )=
P ( A∣B )∗ P (B )

P (A )



Discussion
 Possible to infer driving behaviour from partially observable paths

 Destination 2 is far less likely than Destination 1 due to Destination 1 being far more 
common in the data-set.



Critique / Limitations / Open Issues 

 Tests for inferring goal locations were done with only 5 destination locations

 Easier to correctly predict the goals if they’re relatively spread out vs clustered close 
together 

 Relatively small feature space 

 Assumes the state transitions are known

 Assumes linear reward function

 Requires hand crafted state features

 Extended to a Deep Maximum Entropy Inverse Learning model [Wulfmeier et al, 2016] 



Contributions (Recap)
Problem 

How to handle uncertainties in demonstrations due to sub-optimal experts and how to 
handle ambiguity with multiple reward functions. 

Limitations of Prior Work 

Max. Marginal prediction is unable to be used for inference (predict probability of path), 
or handle sub-optimal experts. Previous action based probabilistic models that could 
handle inferences suffered from label biases. 

Key Insights and Contributions 

MaxEnt uses a probabilistic approach that maximizes the entropy of the actions, 
allowing a principled way to handle noise, and it prevents label bias. It also provides an 
efficient algorithm to compute empirical feature count, leading to state of the art 
performance at the time. 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

