Inverse KKT - Learning Cost functions of Manipulation from Demonstration

Englert, P., Vien, N. A., & Toussaint, M. IJRR 2017

Presenter: Yu-Siang Wang

Outline

- Problem Statement
- Contribution
- Background
- Methods
- Experiments & Results
- Takeaway

Problem Statement

- Problem Statement
- Contribution
- Background
- Methods
- Experiments & Results
- Takeaway

Problem Statement

Learn the cost(reward) function from Demonstration \rightarrow Inverse Optimal Control

Contribution

- Problem Statement
- Contribution
- Background
- Methods
- Experiments & Results
- Takeaway

Contribution

- Learn the cost function (Inverse Optimal Control) with the KKT condition for the constrained motion optimization
- A formulation of square hand-crafted features as cost function and a formulation of kernel method
- These two methods can be reduced as a constrained quadratic optimization problem and easily solved with the existing quadratic solver

Contribution

- Problem Statement
- Contribution
- Background
- Methods
- Experiments & Results
- Takeaway

Background - Optimization

Objective function $x^* = arg\min_x f(x,y,w)$

Background - Optimization

Objective function
$$x^* = arg \min_x f(x,y,w)$$

Constraint s.t. $h(x,y) = 0$

Background - Optimization - Lagrangian Multiplier

Objective function $x^* = arg\min_x f(x,y,w)$

Constraint

s.t.
$$h(x,y) = 0$$

Lagrangian function

$$L(x,\lambda)=f(x)+\lambda h(x)$$

Background - Optimization - Lagrangian Multiplier

Objective function
$$x^* = arg\min_x f(x,y,w)$$

Constraint

s.t.
$$h(x,y) = 0$$

Lagrangian function

$$L(x,\lambda)=f(x)+\lambda h(x)$$
7 $L(x,\lambda)=
abla f(x)+\lambda
abla h(x)=0$

Background - Optimization

Objective function
$$x^* = arg \min_x f(x,y,w)$$

Constraint s.t. $h(x,y) = 0$ $g(x,y) \leq 0$

Karush-Kuhn-Tucker conditions

Given general problem

$$\begin{array}{ll} \min_{x \in \mathbb{R}^n} \ f(x) \\ \text{subject to} \ h_i(x) \leq 0, \ i = 1, \dots m \\ \ell_j(x) = 0, \ j = 1, \dots r \end{array}$$

The Karush-Kuhn-Tucker conditions or KKT conditions are:

•
$$0 \in \partial f(x) + \sum_{i=1}^{m} u_i \partial h_i(x) + \sum_{j=1}^{r} v_j \partial \ell_j(x)$$
 (stationarity)
• $u_i \cdot h_i(x) = 0$ for all i (complementary slackness)
• $h_i(x) \leq 0, \ \ell_j(x) = 0$ for all i, j (primal feasibility)
• $u_i \geq 0$ for all i (dual feasibility)

Karush-Kuhn-Tucker conditions

Given general problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

subject to $h_i(x) \le 0, \ i = 1, \dots m$
 $\ell_j(x) = 0, \ j = 1, \dots r$

The Karush-Kuhn-Tucker conditions or KKT conditions are:

• $0 \in \partial f(x) + \sum_{i=1}^{m} u_i \partial h_i(x) + \sum_{j=1}^{r} v_j \partial \ell_j(x)$ (stationarity)	
• $u_i \cdot h_i(x) = 0$ for all i	(complementary slackness)
• $h_i(x) \leq 0, \ \ell_j(x) = 0$ for all i, j	(primal feasibility)
• $u_i \geq 0$ for all i	(dual feasibility)

Background - Optimization - KKT

Objective function
$$x^* = arg\min_x f(x,y,w)$$

Constraint s.t.
$$h(x,y)=0$$
 $g(x,y)\leq 0$

Lagrangian function

$$L(x,\lambda,\mu)=f(x)+\lambda h(x)+\mu g(x)$$

First KKT condition

$$abla L(x,\lambda) =
abla f(x) + \lambda
abla h(x) + \mu
abla g(x) = 0$$

Background -- Task Settings - Features

Cost function:
$$f(x,y,w) = \sum_t^T w_t^ op \phi_t^2(x_t,y)$$

 ϕ : features. Differences between the forward kinematics mapping and object position (given by y)

- **Transition Features**: Smoothness of the motion (sum of squared acceleration or torques)
- **Position Features**: Represent a body position relative to another body
- **Orientation Features**: Represent orientation of a body relative to other body

Background -- Task Settings - weighting vector w

Cost function:
$$f(x,y,w) = \sum_t^T w_t^ op \phi_t^2(x_t,y)$$

 w_t : Weighting vector at time t. Given in optimal control. Required to solve in the inverse optimal control scenario

Background -- Task Settings - constraints

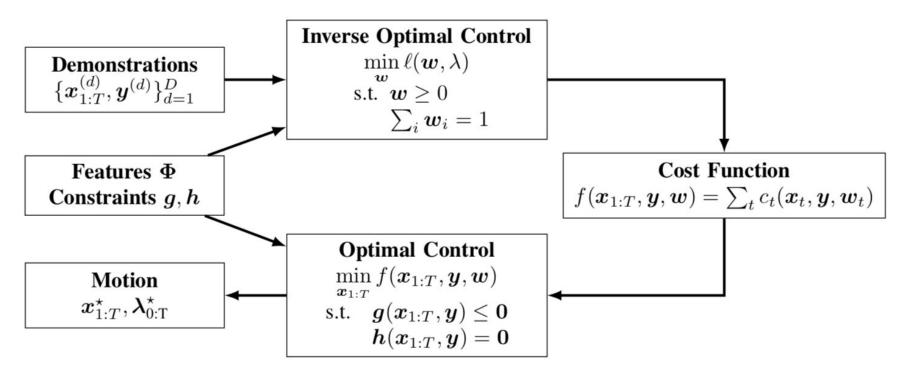
Cost function:
$$f(x,y,w) = \sum_t^T w_t^ op \phi_t^2(x_t,y)$$

Constraint:

 $g_t(x,y) \leq 0$: The smallest distance difference between the forward kinematics mapping and object position has to be larger than a threshold. [Body orientation or relative positions between robot and an object]

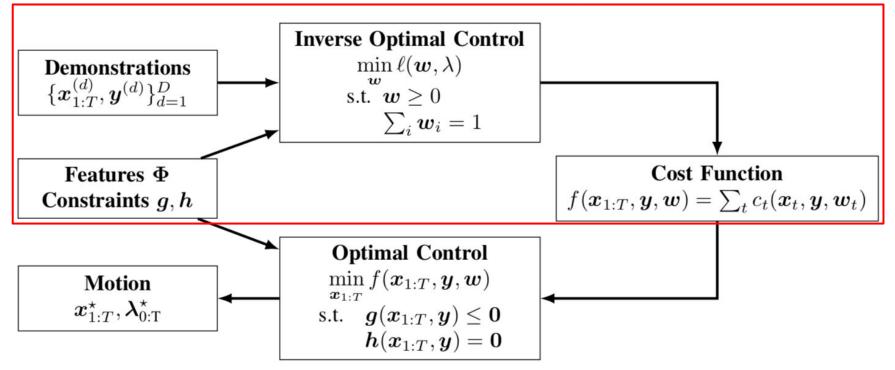
 $h_t(x,y) = 0$: The distance between hand and object that should be exact zero

Optimal Control and Inverse Optimal Control $f(x,y,w) = w^{ op} \phi^2$



Inverse KKT overview

$$f(x,y,w) = w^ op \phi^2$$



Methods

- Problem Statement
- Contribution
- Background
- Methods
- Experiments & Results
- Takeaway

Cost function $f(x,y,w) = w^ op \phi^2$

Constraint s.t. h(x,y)=0 $g(x,y)\leq 0$

Goal: Given demonstration x* and y — Find the optimal w

Cost function
$$f(x,y,w) = w^ op \phi^2$$

Constraint s.t. h(x,y)=0 $g(x,y)\leq 0$

Lagrangian function

$$\mathcal{L}(x,\lambda,w) = f(x) + \lambda^ op [h(x),g(x)]^{-1}$$

First KKT condition

$$egin{aligned}
abla L(x,\lambda,w) &=
abla f(x) + \lambda^ op
abla [h(x),g(x)] \ &= 0 \end{aligned}$$

If we assume the demonstration x* is the optimal demonstration

$$abla L(x^*,\lambda,w) =
abla f(x^*) + \lambda^ op
abla [h(x^*),g(x^*)] = 0$$

If we assume the demonstration x* is the optimal demonstration

$$abla L(x^*,\lambda,w) =
abla f(x^*) + \lambda^ op
abla [h(x^*),g(x^*)] = 0$$

Just find the w and λ make the equation hold!

If we assume the demonstration x* is the optimal demonstration

$$abla L(x^*,\lambda,w) =
abla f(x^*) + \lambda^ op
abla [h(x^*),g(x^*)] = 0$$

Just find the w and λ make the equation hold! Very hard to do it!

Treat it as a loss function and find the optimal w through the optimization method

$$abla L(x^*,\lambda,w) =
abla f(x^*) + \lambda^ op
abla [h(x^*),g(x^*)]$$

Loss function: I, D: number of demonstration

$$l = \sum_{d=1}^D l^d$$
 $l^d = ||
abla L(x^*,\lambda,w)||^2$

Goal: Find the optimal w. Problem to solve w?

$$l = \sum_{d=1}^{D} l^d$$

$$l^d = ||
abla L(x^*,\lambda,w)||^2$$

Goal: Find the optimal w.

$$l = \sum_{d=1}^{D} l^d$$

$$l^d = \left| \left|
abla L(x^*,\lambda,w)
ight|
ight|^2$$

Two unknown variables here! We don't know λ !

Goal: Find the optimal w.

$$l = \sum_{d=1}^{D} l^d$$

$$l^d = \left| \left|
abla L(x^*,\lambda,w)
ight|
ight|^2$$

Two unknown variables here! We don't know λ ! **Represent** λ with w to be a single variable optimization

$$\nabla_{\boldsymbol{\lambda}^{(d)}} \ell^{(d)}(\boldsymbol{w}, \boldsymbol{\lambda}^{(d)}) = \boldsymbol{0}$$

$$\Rightarrow \quad \boldsymbol{\lambda}^{(d)}(\boldsymbol{w}) = -2(\boldsymbol{\tilde{J}_c} \boldsymbol{\tilde{J}_c}^{\top})^{-1} \boldsymbol{\tilde{J}_c} \boldsymbol{J}^{\top} \operatorname{diag}(\boldsymbol{\Phi}) \boldsymbol{w}$$

Goal: Find the optimal w.

$$l = \sum_{d=1}^D l^d$$

$$l^d = ||
abla L(x^*, \lambda, w)||^2$$
 $\ell^{(d)}(w) = 4w^{ op} \operatorname{diag}(\Phi) J(I - ilde{J}_c^{ op}(ilde{J}_c ilde{J}_c^{ op})^{-1} ilde{J}_c) J^{ op} \operatorname{diag}(\Phi) w$
 $\Lambda^{(d)}$

 $l^{d}(w)$: is a function of w and all the other terms are given

Goal: Find the optimal w.

$$l = \sum_{d=1}^D l^d$$

$$l^d = ||
abla L(x^*, \lambda, w)||^2$$
 $\ell^{(d)}(w) = 4w^{ op} \operatorname{diag}(\Phi) J \left(I - ilde{J}_c^{ op} (ilde{J}_c ilde{J}_c^{ op})^{-1} ilde{J}_c
ight) J^{ op} \operatorname{diag}(\Phi) w$
 $\Lambda^{(d)}$

 $l^{d}(w)$: is a function of w and all the other terms are given

 $\min_w w^ op \Lambda^d w$ s.t. $w \geq 0$ (Quadratic optimization)

Goal: Find the optimal w.

 $\min_w w^ op \Lambda^d w$ s.t. $w \geq 0$

Goal: Find the optimal w.

 $\min_w w^ op \Lambda^d w$ s.t. $w \geq 0$

Problem?

Goal: Find the optimal w.

 $\min_w w^ op \Lambda^d w$ s.t. $w \geq 0$

Problem? w can be all zeros!

Goal: Find the optimal w.

Add constraint for w! $\min_w w^{ op} \Lambda^d w$ s.t. $w \geq 0$ $\sum_i w_i = 1$

Inverse Optimal Control -- features method

Goal: Find the optimal w.

Add constraint for w! $\min_w w^{ op} \Lambda^d w$ s.t. $w \geq 0$ $\sum_i w_i = 1$

Linear Solution

$$w = A
ho$$

where A is given (one parameter to multiple task)

Inverse Optimal Control -- features method

Goal: Find the optimal w.

Add constraint for w! $\min_w w^{ op} \Lambda^d w$ s.t. $w \geq 0$ $\sum_i w_i = 1$

Nonlinear Solution

$$w = A(
ho)$$

w is a gaussian distribution function of t. Mean and variance in Gaussian is described by p

Inverse Optimal Control -- features method

Goal: Find the optimal w.

$$f(x,y,w) = w^ op \phi^2$$
 .

$$l = \sum_{d=1}^{D} l^d$$

$$l^d = \left| \left|
abla L(x^*,\lambda,w)
ight|
ight|^2$$

 $l^{d}(w)$: is a function of w and all the other terms are given

$$\min_w w^ op \Lambda^d w$$
 s.t. $w \geq 0$ $\sum_i w_i = 1$

Kernel Method: Instead of using hand crafted features, using the features in the kernel space

Cost function f: $f(x,y,w) = w^ op \phi^2$

Kernel Method: Instead of using hand crafted features, using the features in the kernel space

Cost function f: α: weighting vector

$$f(x,y,w) = w^ op \phi^2$$

$$f(x,y,lpha)=lpha^ op k(x_1,x_2)$$

k: RBF kernel function Σ^{-1} : hyperparameters

$$k(x1,x2) = exp(-(x1-x2)^{ op}\Sigma^{-1}(x_1-x_2))$$

Goal: Solve
$$lpha \qquad \qquad f(x,y,lpha) = lpha^ op k(x_1,x_2)$$

Loss function will be optimized $l = \sum_{d=1}^{D} l^d$

$$l^{d}=||
abla L(x^{*},\lambda,lpha)||^{2}$$

Goal: Solve
$$lpha \qquad \qquad f(x,y,lpha) = lpha^ op k(x_1,x_2)$$

Loss function will be optimized $l = \sum_{d=1}^{D} l^d$

$$l^d = ||
abla L(x^*,\lambda,lpha)||^2$$

Represent loss function with α

$$\begin{split} \ell^{(d)}(\boldsymbol{\alpha}) &= \nabla \boldsymbol{f}_{\boldsymbol{x}_{1:T}}^{\top} \left(\boldsymbol{I} - \boldsymbol{J}_{c}^{\top} (\boldsymbol{J}_{c} \boldsymbol{J}_{c}^{\top})^{-1} \boldsymbol{J}_{c} \right) \nabla \boldsymbol{f}_{\boldsymbol{x}_{1:T}} \\ &= \boldsymbol{\alpha}^{\top} \boldsymbol{\Omega}^{(d)} \boldsymbol{\alpha} \end{split}$$

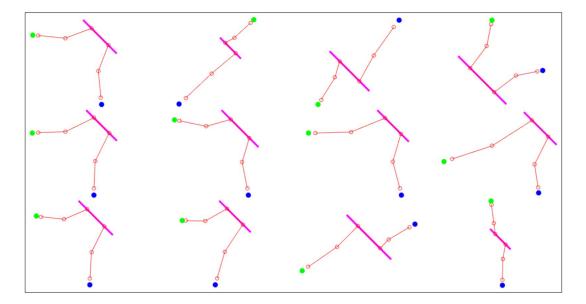
Solve α with quadratic solver

 $\min_{lpha} lpha^{ op} \Omega lpha \quad ext{ s.t. } lpha \geq 0 \quad \sum_i lpha_i = 1$

• Experiments & Results

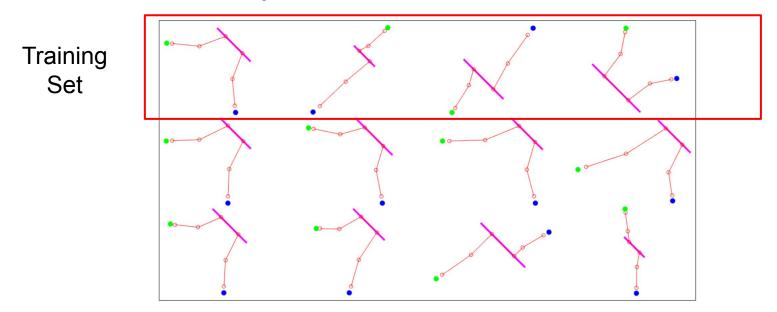
- Problem Statement
- Contribution
- Background
- Methods
- Experiments & Results
- Takeaway

Experiments -- toy 2d example



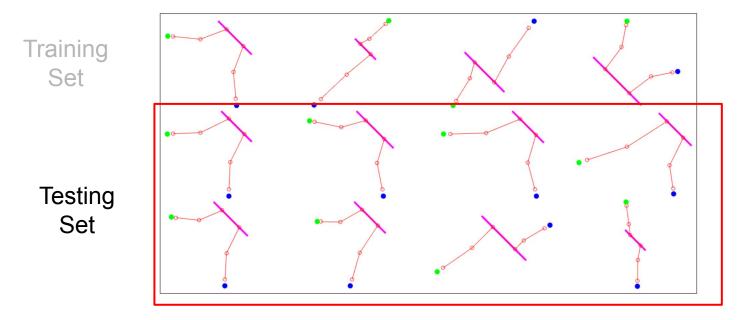
Task: Start from green point and and end at blue point. 6 time steps in total and time step 3 and 4 should be in contact with the stick.

Experiments -- toy 2d example



Task: Start from green point and and end at blue point. 6 time steps in total and time step 3 and 4 should be in contact with the stick.

Experiments -- toy 2d example



Task: Start from green point and and end at blue point. 6 time steps in total and time step 3 and 4 should be in contact with the stick.

Results -- toy 2d example

method	error (train set)	error (test set)	constraint violation (train set)	constraint violation (test set)
IKKT (feature)	0.027475	0.46944	1.1102e-15	1.6653e-15
IKKT (kernel)	0.94625	66.065	4.4409e-16	8.2469e-16
CIOC	0.014732	0.64592	0.00058039	0.001128

Error: sum of absolute difference between the resulting motion with the learned weights w and the reference motion.

Constraint violation: Distance to the stick.

Results -- toy 2d example

method	error (train set)	error (test set)	constraint violation (train set)	constraint violation (test set)
IKKT (feature)	0.027475	0.46944	1.1102e-15	1.6653e-15
IKKT (kernel)	0.94625	66.065	4.4409e-16	8.2469e-16
CIOC	0.014732	0.64592	0.00058039	0.001128

Error: sum of absolute difference between the resulting motion with the learned weights w and the reference motion.

Error: Hand-crafted features << Kernel Method

Ref: Levine and Koltun, Continuous Inverse Optimal Control with Locally Optimal Examples, ICML 2011

Results -- toy 2d example

2				
method	error (train set)	error (test set)	constraint violation (train set)	constraint violation (test set)
IKKT (feature)	0.027475	0.46944	1.1102e-15	1.6653e-15
IKKT (kernel)	0.94625	66.065	4.4409e-16	8.2469e-16
CIOC	0.014732	0.64592	0.00058039	0.001128
5				

Constraint violation: Distance to the stick.

Constraint Violation Error: IKKT << CIOC

Ref: Levine and Koltun, Continuous Inverse Optimal Control with Locally Optimal Examples, ICML 2011

Experiments -- synthetic dataset

Synthetic dataset: longer time steps (50 time steps)

Groundtruth weighting vector w is known (But still requires to learn it)

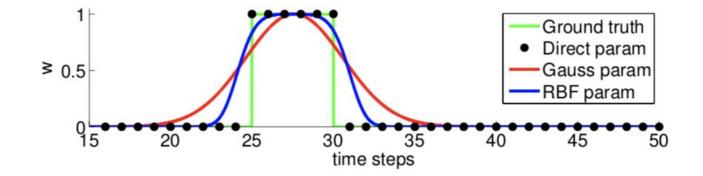
Experiments

Synthetic dataset: longer time steps (50 time steps)

Three methods

- Direct param: Each time step learn a parameter
- RBF param: 30 Gaussian with standard deviation 0.8 and uniformly distributed in 50 time steps.
- Nonlinear Gaussian: A single gaussian. The mean and the standard deviation are parametrized.

Results



Direct param outperform the other methods

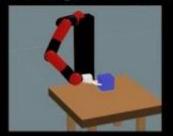
Experiments

Inverse KKT: Learning Cost Functions of Manipulation Tasks from Demonstrations

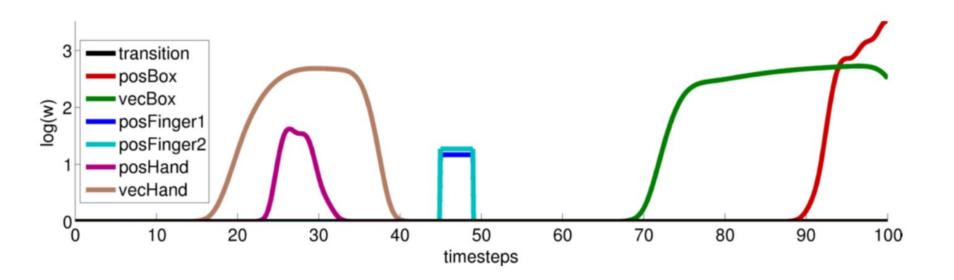
Peter Englert, Marc Toussaint U Stuttgart

Part 1: Opening a door with PR2

Part 2: Sliding a box in simulation



Results - Sliding Box on a table



Takeaway

- Problem Statement
- Contribution
- Background
- Methods
- Experiments & Results
- Takeaway

Takeaway

- Learn the cost function with the inverse KKT method for constrained motion optimization
- The author proposed two methods -- hand crafted features based method and kernel based method
- Both of the methods can be solved by existing quadratic solver

Discussion

- Handcrafted features works well. What if the task is too difficult and the handcrafted features are not good enough?
- Is $f(\boldsymbol{x}_{1:T}, \boldsymbol{y}, \boldsymbol{w}) = \boldsymbol{w}^{\top} \Phi^2(\boldsymbol{x}_{1:T}, \boldsymbol{y})$ a good enough cost function?

Questions

- The relation between optimal control and inverse optimal control
- The relation between loss function in inverse optimal control and the cost function in optimal control
- What two main methods do they use
- What's the KKT first condition