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Motivation and Main Problem

- What is the problem being solved?

   - Model-based RL’s key problem is model bias

   - This is more pronounced with a lack of data samples

- Bad sample data efficiency renders these methods unusable for lower 
cost mechanical systems



Motivation and Main Problem

- Why is increasing sample data efficiency hard?

   - Requires informative prior knowledge

   - Extracting more information from available data

- Can we increase data efficiency without assuming any expert 
knowledge?



PILCO Contributions 

1. PILCO is model-based policy search method that reduces Model bias.

2. Learns Probabilistic Dynamics model and incorporates model 
uncertainty into planning. 

    - This facilitates learning from very few trials (some cases <20 secs)

3. Computes policy gradients analytically.



Model-Based RL Motivation

- Sample efficiency

- Transferability and Generality
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Model-Based vs Model-Free

MB Upsides:

- Efficiently extract valuable information from available data

- Performs much better than MF where there is lack of sample data

MB Downsides:

- Lower overall reward with respect to Model-Free Methods 
(if sufficient time provided for Model-Free method)

- Model Bias: assumes that learned dynamics accurately resembles the real 
environment

- What can this lead to? Optimizer’s Curse



Vanilla Model-Based 
Algorithm

But what kind of model should 
we learn?



Gaussian Process

Gaussian process is a stochastic process (a collection of random 
variables indexed by time or space), such that every finite collection of 
those random variables has a multivariate normal distribution, i.e. 
every finite linear combination of them is normally distributed.
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Gaussian Process Intuition
Gaussian process 
is a stochastic 
process such that 
every finite 
collection of 
those random 
variables has a 
multivariate 
normal 
distribution, i.e. 
every finite linear 
combination of 
them is normally 
distributed.

Can this do 2D?



Approach

            is the cost (negative reward) of being in state x at time t

We are minimizing the expected return. 

1. Dynamics Model Learning

2. Policy Evaluation

3. Analytic Gradients for Policy Improvement



Dynamics Model Learning - Using GP

Training inputs: 

Training targets: 

Where: 

One steps predictions from the GP are:



Policy Evaluation

Having the mean µ∆ and the covariance Σ∆ of the predictive distribution p(∆
t
), the 

Gaussian approximation to the desired distribution p(x
t
) is given as N(x

t
| µ

t
, Σ

t
) 

with:



Gradients for Policy Improvement

 Both µ
t
 and Σ

t
 are functionally dependent on the mean µ

u
 

and the covariance Σ
u
 of the control signal (and θ) through 

µ
t−1

 and Σ
t-1



Algorithm

Policy 
Evaluation



Experimental Results

Real cart-pole system. Snapshots of a controlled trajectory of 20 s length after having 
learned the task. To solve the swing-up plus balancing, pilco required only 17.5 s of 
interaction with the physical system.



Experimental Results

Robotic unicycle. Histogram (after 1,000 test runs) of the distances of the flywheel 
from being upright.



Experimental Results



Critiques and Limitations 

1. Approximated p(∆
t
) which could be a multi-modal distribution by a 

simple Gaussian distribution.

2. Environments covered had simple dynamics models

a. GPs are computationally expensive. Cannot handle large number 
of samples.



Contributions (Recap)

-Problem: Model Bias

-Why is it important: Incorrect estimation of future states and confidence in 
prediction leads to poor results

-Key Insight: 
• Use probabilistic dynamics model to estimate certainty in future predictions 

and cascade of predictions
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Motivation and Main Problem

- What is the problem being solved?

   -  GPs cannot be used for problems that need larger number of trials

       - GPs scale cubically with number of trials

   -  PILCO does not consider temporal correlation in model uncertainty 
between successive state transitions, resulting in underestimation of 
state uncertainty at future time steps



DeepPILCO Contributions 

1. Replaced GP with a Bayesian deep dynamics model (BNN) while 
maintaining data-efficiency.

2. Used BNN with approximate variational inference allowing it to scale 
linearly with number of trials.

3. Used particle methods to sample dynamics function realisations and 
obtain lower cumulative cost than PILCO.



Bayesian Deep 
Learning



Approach

1. Output uncertainty 

Bayesian Neural Network. True posterior is intractably complex.

Use Variational Inference (Dropout) to find distribution that minimizes KL divergence with true
Posterior.

2. Input uncertainty 

Model must pass uncertain dynamics outputs from time step t as uncertain input into the
dynamics model time step t+1.

Particle Methods

3. Sampling functions from the dynamics model

Sampling individual functions from the dynamics model and following a single function
throughout an entire trial. 



Approach - Output Uncertainty

1. Require output uncertainty from dynamics model to gain 

data-efficiency.

Simple NN models cannot express output model uncertainty so BNN 

is used.

2. a) True posterior of a BNN is intractably complex

b) Variational Inference (Dropout) is used to find distribution that 

minimizes KL divergence with true Posterior.

3. Uncertainty in the weights induces prediction uncertainty



1. Propagate state distributions through dynamics model in the next time step. Cannot 

be done analytically for NNs.

2. Particle methods used to feed a distribution into the dynamics model. 

a. Sample set of particles from input distribution

b. Pass these particles through the BNN dynamics model

c. Yields an output distribution of particles. 

3. Fitting a Gaussian distribution to output state distribution (also in PILCO) at each time 

step is critical

a. Forces a unimodal fit which penalizes policies cause the predictive states to 

bifurcate  (often precursor to a loss of control). 

Approach - Input Uncertainty



Approach - Sampling Functions

1. This approach allows following a single sampled function throughout an 

entire trial.

a. Function weights are sampled once for the dynamics model and used 

at all timesteps

b. Repeated application of the BNN model can be seen as a simple 

Bayesian RNN

2. PILCO does not consider such temporal correlation in model uncertainty 

between successive state transitions

a. PILCO underestimates state uncertainty at future timesteps



Algorithm
Which point is 
changed for 
DeepPILCO?



Algorithm



Results



Progression of model fitting 
and controller optimisation 
as more trials of data are 
collected.
Each x-axis is timestep t, and each 
y-axis is the pendulum angle in radians.

The goal is to swing the pendulum up 
such that mod(θ, 2π) ≈ 0.

The green lines are samples from the 
ground truth dynamics. The blue 
distribution is our Gaussian-fitted 
predictive distribution of states at each 
timestep.



Contributions (Recap)

-Problem: Using a NN as probabilistic dynamics model

-Why is it important: GPs are very computationally expensive when working 
with large number of samples

-Why is it hard: Cannot be done analytically. Need approximation 
techniques

-Key Insight: 
• Prefer probabilistic dynamics model especially when optimizing 

data-efficiency
• Using variational inference and particle methods techniques to use neural 

networks as probabilistic dynamics models


