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Overview
● Problem statement: model bias in MB-RL
● Contributions of the paper
● Background
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○ Meta Learning

● Proposed solution: MB-MPO
● Experiments & results
● Discussion: limitations and open issues



Motivation

Model-based RL is sample-efficient assuming a good model of the environment

● A dynamics model can (a) provide training trajectories for policy learning

                                            (b) provide gradient information in control

But “accurate dynamics models can often be far more complex than good policies”

● E.g. Pouring water into cup. 
● Policy (state → action mapping) description is simpler than physics required 

for next-state prediction (state, action → next state mapping)  
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What if the model is wrong?

Any errors in the dynamics model propagate to policy 
learning (model bias)

Model-based RL must account for uncertainty of model fit

[https://bair.berkeley.edu/blog/2019/12/12/mbpo/]
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● Cast (single-environment) MB-RL as meta learning
○ Each model (“learner”) in the ensemble adapts to its “task”, and policy (“meta learner”) seeks 

best average performance across ensemble after adaptation

● Propose MB-MPO algorithm that uses MAML-style meta learner
○ Meta learner chooses initial parameters that yield best single-gradient-step adaptation
○ Performance gains over model-based ensembling w/o meta learning (ME-TRPO)
○ Sample efficiency gains over model-free methods

Contributions



RL is about learning a policy that does well in an environment

Model-based RL uses models of environment dynamics towards this goal

Models fit via supervised learning using relatively few off-policy trajectories 

Models can be leveraged by policy learners in a variety of ways

● Random shooting: choose best next action over random trajectory rollouts 
● Propagate gradients of policy parameters through trajectory rollouts
● Sample (“imagine”) many trajectories to train policy via model-free method

○ Focus of this paper; policy updates using 100k trajectories while models fit using 4k

Background: MB-RL

Note: see Wang et al 2019 Benchmarking MB-RL for 
helpful taxonomy of model-based methods

[Sutton & Barto 2018]



“Policy optimization is prone to overfit to deficiencies of the model”

Possible approaches to mitigating model bias:

● Probabilistic model to explicitly capture environment variance (PILCO, PETS)
○ Limitations: density modeling is difficult. 

■ GP gives good non-parametric uncertainty estimates but doesn’t scale.
■ Neural nets scale but make simplifying distributional assumptions

● Learn policy that does well on average over ensemble of models (ME-TRPO)
○ Limitations: each ensemble member is still free to overfit
○ In principle, environments with multimodal transitions necessitate large ensembles

Background: Mitigating model bias

Note: see Wang et al 2019 Benchmarking MB-RL for 
helpful taxonomy of model-based methods

[Sutton & Barto 2018]



Background: Meta learning

[https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/]

[https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/]

Learning seeks to generalize to new examples

Meta learning seeks to generalize to new 
experiences/tasks

Model-agnostic meta learner (MAML) is a popular 
approach for learning good initial parameters 
given a sequence of tasks

[Clavera et al 2018]

https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/
https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/


Proposed method: MB-MPO
Supervised learning of model ensemble from shared off-policy trajectory buffer

Generate set of imagined trajectories using the model ensemble

For each model, compute average returns under current policy, and grads w.r.t. parameters

For each model, take an adaptation step on own trajectories

Meta-update initial policy parameters to improve average adapted returns

[Clavera et al 2018]
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Implementation details
Evaluated on continuous control tasks with deterministic dynamics

● Variance across model ensembles due to data shuffling and env. init.
● Shuffling dominates randomness since all models share experience.

Outer loop policy updated with TRPO, while inner loop uses vanilla policy gradient

Second-order gradients are numerically approximated, rather than using costly but 
exact automatic differentiation.

Some standard tricks (reward baselines, weight norm) used to stabilize training

[REINFORCE under chain rule, Weber 2019]



Experiments & Results
Six continuous control benchmark tasks from Mujoco with deterministic dynamics

Meta-learned init. params. used to report rewards (adaptation for inner loop only)

Key experiments:

● Show the inner loop adaptation meaningfully changes the policy distribution
● Show sample efficiency win over model-free algos
● Show performance win over model-based algos that account for model bias
● Show robustness to observation noise in experience buffer used to fit models



Experiments & Results
Simple synthetic setting

● Agent must move to goal in 2-D space

“Plasticity” computed as KL-divergence of pre- 
and post-update policy within the inner loop 

● This quantity depends on the agents 
current state

● Agent shows greater plasticity when far 
away from goal; these states are 
underrepresented in the experience buffer

[Clavera et al 2018]



Experiments & Results
MB-MPO achieves sample efficiency wins over model-free methods

[Clavera et al 2018]



Experiments & Results
MB-MPO outperforms model-biased-aware model-based methods

Baselines: standard ensembles (ME-TRPO) and model-free fine tuning (MB-MPC)

[Clavera et al 2018]



Experiments & Results
Measurement noise added to trajectories collected from environment

Therefore each ensemble is potentially unreliable

MB-MPO is more robust than standard ensembling (ME-TRPO)

[Clavera et al 2018]



More results

MB-MPO wins:   8
ME-TRPO wins: 3 
Statistical tie:      7
-------------------------
Total:                  18

[Wang et al 2019]



Limitations & Open Issues
Meta learning is about generalizing to new experiences

● Despite empirical strength of MB-MPO, is meta learning the right tool to tackle 
model bias?

○ If yes, is MAML the right meta learning approach to tackle model bias?

● Does this approach work for environments with stochastic dynamics? What 
about discrete states?



Summary
Model bias is a key technical issue blocking the potential sample efficiency wins of 
model-based RL over model-free.

Explicitly modeling environment uncertainty (e.g., PILCO) does not scale.

In general, ensembling is an easy way to capture environment variance that works 
decently in practice.

Ensembles can be improved by the proposed MB-MPO, a MAML-style meta 
learning algorithm that seeks optimal initial policy parameters.

Model bias remains an open problem with many possible approaches!


