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Problem settings

• The Markov Decision Process <𝑆, 𝐴, 𝑇, 𝑟, 𝛾>

• S states

• A actions 

• 𝑇 𝑠, 𝑎, 𝑠′ = 𝑃[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (stochastic) transaction func

• 𝑟 𝑠, 𝑎 = 𝔼[𝑅𝑡+1|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎] reward

• 𝛾𝑡 discount factor at time t

• Discounted return 𝐺𝑡 = σ𝑘=0
∞ 𝛾𝑡

(𝑘)
𝑅𝑡+𝑘+1

• Discount factor 𝛾𝑡
(𝑘)

= ς𝑖=1
𝑘 𝛾𝑡+𝑖



Tons of tricks in a nutshell! Ready?



Value-based RL

• vπ(s)= 𝔼[𝐺𝑡|𝑆𝑡 = 𝑠] or 𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

• Then, with the value (or Q value) as a proxy, we could derive the 
policy 𝜋 with 𝜖-greedy argmax. (take max value action with 
probability 1- 𝜖 or uniformly from action space A with probability 𝜖)



DQN

• A deep Q network (DQN) is a multi-layered neural network that for a 
given state s outputs a vector of action values Q(s, · ; 𝜃), where 𝜃 are 
the parameters of the network.

• target network: its parameters (𝜃−) are copied every episode from 
the online network (𝜃) to make training more stable.

• reply buffers (Experience reply): transitions, rewards and actions are 
stored for some time and sampled uniformly from this memory bank 
to update the network. This is to prevent our DNN to overfit the 
current episode



Double Q-Learning

• Two separate value functions (DNNs in our case)

• Pick a batch of experience, then assign each experience randomly to 
one of the DNN to update it. After this, we get two set of params 𝜃
and 𝜃′

• For each update, one set of DNN is used to determine the action 
greedily, the other is used to determine the Q value.



From Double Q-Learning to Prioritized Replay

• For SGD, we used this to measure the temporal-difference (TD) error:

• Δ = 𝑅𝑡+1 + 𝛾𝑡+1𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄𝜃− 𝑆𝑡+1 , 𝑎′ − 𝑄𝜃 𝑆𝑡 , 𝐴𝑡
• We perform gradient descent over 𝜃, then update 𝜃− in the 

beginning of every episode.



Backup vanilla Q-Learning

• 𝜋: policy

• 𝛾: discount factor

• R: reward

• S: state

• A: action 

• Then, the optimal Q value 

≡ 𝔼 [ 𝑅1 + 𝛾𝑄𝜋 𝑠𝑡+1 , 𝑎
′ ]



Backup vanilla Q-Learning

• The optimal Q value can be learned from Q Learning

• In most cases, we cannot go over all action values in all states 
separately. So, we parametrize the Q value by 𝜃: 𝑄 𝑠, 𝑎; 𝜃𝑡 , which 
can be updated with SGD:

•

•

• 𝑌𝑡
𝑄

represents the optimal Q value given best choice of 𝜃

• 𝛼 is the learning rate



Prioritized Replay

• DQN samples uniformly from the replay buffer.

• we sample import (with high expected learning progress) transactions 
more frequently.

• Sample probability given the (traditional) experience <𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1>

• ω is a hyper-parameter that determines the shape of the distribution. 

• Note that stochastic transitions might also be favored, even when 
there is little left to learn about them, in order to avoid overfitting.



Dueling Networks

• Basically, add another network to evaluate action advantages.

• We evaluate “goodness” (on the edge or not) of a state s and advantage of 
choosing an action a (turn left or right). 

• 𝑣𝜂: value of state. 𝜂 is the params of such value stream.

• 𝑎𝜓: value of action advantage. 𝜓 is the params of such

advantage stream.

• 𝑓𝜉 is the shared convolutional encoder (network)



Multi-step Learning

• truncated n-step return from a given state 𝑆𝑡:

• Then, the multi-step variant of DQN is then defined by minimizing the 

alternative loss (same thing as before, just changed 𝑅𝑡 to be 𝑅𝑡
(𝑛)

• Multi-step targets with suitably tuned n often lead to faster learning



Distributional RL
• learn to approximate the distribution of returns instead 

of the expected return.

• Maximize over the expected sum of future rewards.

• New Bellman: 𝑉𝜋 𝑥 ≡ 𝔼𝑃𝜋 σ𝑡 𝛾
𝑡𝑅 𝑥𝑡 |𝑥0 = 𝑥 = 𝔼𝑅 𝑥 + 𝔼𝑥′~𝑃𝜋𝑉

𝜋 𝑥′

• Future expectation makes modeling even more complex! We use a hidden 
variable z to model the value distribution:

• 𝑉𝜋 𝑥 = 𝔼𝑍𝜋 𝑥 = 𝔼 𝑅 𝑥 + 𝛾𝑍𝜋 𝑥′ , where 𝑥′~P𝜋(∙ |𝑥)

• Discrete distributions C51 to measure. Simply replace the Q-output in DQN to 
a softmax over 51 probabilities.(more bins, better performance!)



Distributional RL
• The equations for a distributional 

variance of Q-learning: constructing a 
new support 𝑑𝑡 by minimizing the KL 
divergence between 𝑑𝑡 and target 𝑑𝑡 ’.



Noisy Nets

• where many actions must be executed to collect the first reward 
(Montezuma’s Revenge), what do we do?

• Add noise for better exploration!

• Over time, the network can learn to 
ignore the noisy stream at different rates 
in different parts of the state space

• self-annealing



Now, group together!



Recap



Target 
net

Dueling network 

Prioritized reply

Final target KL to minimize 

Multi-step Learning Distributional RL

Double DQN



Experiments:

• “All Rainbow’s components have a number of hyper-parameters. The 
combinatorial space of hyper-parameters is too large for an 
exhaustive search, therefore we have performed limited tuning.”



Experiments:

• Double DQN is redundant?

• Is it just useless or the 
functionality is shadowed by 
the combination of other 
tricks?



• Pros:

All tricks together, SOTA performance!

A good base to construct your other algorithms on

• Cons:

Hard to tune, hard to implement

No clue how to make it more efficient



IMPALA:
Scalable Distributed Deep-RL with Importance 

Weighted Actor-Learner Architectures



IMPALA



V trace correction

if 𝝁>𝝅



My Questions:

• Where were they from?



• What is the most important contribution of IMPALA?

(hint: distributed)


