Rainbow - Combining Improvements in Deep Reinforcement Learning IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures

Mohan Zhang

# Problem settings

- The Markov Decision Process  $\langle S, A, T, r, \gamma \rangle$
- S states
- A actions
- $T(s, a, s') = P[S_{t+1} = s' | S_t = s, A_t = a]$  (stochastic) transaction func
- $r(s, a) = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$  reward
- $\gamma_t$  discount factor at time t
- Discounted return  $G_t = \sum_{k=0}^{\infty} \gamma_t^{(k)} R_{t+k+1}$
- Discount factor  $\gamma_t^{(k)} = \prod_{i=1}^k \gamma_{t+i}$

## Tons of tricks in a nutshell! Ready?



#### Value-based RL

- $\mathbf{v}^{\pi}(\mathbf{s}) = \mathbb{E}[G_t | S_t = s] \text{ or } Q^{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$
- Then, with the value (or Q value) as a proxy, we could derive the policy  $\pi$  with  $\epsilon$ -greedy argmax. (take max value action with probability 1-  $\epsilon$  or uniformly from action space A with probability  $\epsilon$ )

## DQN

- A deep Q network (DQN) is a multi-layered neural network that for a given state *s* outputs a vector of action values  $Q(s, \cdot; \theta)$ , where  $\theta$  are the parameters of the network.
- target network: its parameters ( $\theta^-$ ) are copied every episode from the online network ( $\theta$ ) to make training more stable.

$$Y_t^{\text{DQN}} \equiv R_{t+1} + \gamma \max_a Q(S_{t+1}, a; \boldsymbol{\theta}_t^-).$$
 (3)

 reply buffers (Experience reply): transitions, rewards and actions are stored for some time and sampled uniformly from this memory bank to update the network. This is to prevent our DNN to overfit the current episode

# Double Q-Learning

- Two separate value functions (DNNs in our case)
- Pick a batch of experience, then assign each experience randomly to one of the DNN to update it. After this, we get two set of params  $\theta$  and  $\theta'$
- For each update, one set of DNN is used to determine the action greedily, the other is used to determine the Q value.

$$Y_t^{\mathbf{Q}} \equiv R_{t+1} + \gamma \max_a Q(S_{t+1}, a; \boldsymbol{\theta}_t) . \qquad (2)$$

$$Y_t^{\text{DoubleQ}} \equiv R_{t+1} + \gamma Q(S_{t+1}, \operatorname{argmax}_a Q(S_{t+1}, a; \boldsymbol{\theta}_t); \boldsymbol{\theta}_t') . \qquad (4)$$

$$Y_t^{\text{DoubleDQN}} \equiv R_{t+1} + \gamma Q(S_{t+1}, \operatorname{argmax}_a Q(S_{t+1}, a; \boldsymbol{\theta}_t), \boldsymbol{\theta}_t^-) .$$

# From Double Q-Learning to Prioritized Replay

- For SGD, we used this to measure the *temporal-difference (TD) error*:
- $\Delta = R_{t+1} + \gamma_{t+1} \operatorname{argmax}_{a'} Q_{\theta} (S_{t+1}, a') Q_{\theta}(S_t, A_t)$
- We perform gradient descent over  $\theta$ , then update  $\theta^-$  in the beginning of every episode.

# Backup vanilla Q-Learning

$$Q_{\pi}(s,a) \equiv \mathbb{E} \left[ R_1 + \gamma R_2 + \dots \mid S_0 = s, A_0 = a, \pi \right]$$
$$\equiv \mathbb{E} \left[ R_1 + \gamma Q_{\pi}(s_{t+1}, a') \right]$$

- $\pi$ : policy
- $\gamma$ : discount factor
- R: reward
- S: state
- A: action
- Then, the optimal Q value  $\,\,Q_*(s,a)\,=\,{
  m max}_\pi\,Q_\pi(s,a)$

# Backup vanilla Q-Learning

- The optimal Q value can be learned from Q Learning
- In most cases, we cannot go over all action values in all states separately. So, we parametrize the Q value by  $\theta$ :  $Q(s, a; \theta_t)$ , which can be updated with SGD:

• 
$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha (Y_t^{\mathsf{Q}} - Q(S_t, A_t; \boldsymbol{\theta}_t)) \nabla_{\boldsymbol{\theta}_t} Q(S_t, A_t; \boldsymbol{\theta}_t)$$
. (1)  
•  $Y_t^{\mathsf{Q}} \equiv R_{t+1} + \gamma \max_a Q(S_{t+1}, a; \boldsymbol{\theta}_t)$ . (2)

- $Y_t^Q$  represents the optimal Q value given best choice of  $\theta$
- $\alpha$  is the learning rate

# Prioritized Replay

- DQN samples uniformly from the replay buffer.
- we sample import (*with high expected learning progress*) transactions more frequently.
- Sample probability given the (traditional) experience  $\langle S_t, A_t, R_t, S_{t+1} \rangle$

$$p_t \propto \left| R_t + \gamma_t - \max_{a'} q_{\overline{\theta}}(S_{t+1}, a') - q_{\theta}(S_t, A_t) \right|^{\omega}$$

- $\omega$  is a hyper-parameter that determines the shape of the distribution.
- Note that stochastic transitions might also be favored, even when there is little left to learn about them, in order to avoid overfitting.

# **Dueling Networks**

- Basically, add another network to evaluate action advantages.
- We evaluate "goodness" (on the edge or not) of a state s and advantage of choosing an action a (turn left or right).

$$q_{\theta}(s,a) = v_{\eta}(f_{\xi}(s)) + a_{\psi}(f_{\xi}(s),a) - \frac{\sum_{a'} a_{\psi}(f_{\xi}(s))}{N_{\text{actions}}}$$

- $v_{\eta}$ : value of state.  $\eta$  is the params of such value stream.
- $a_\psi$ : value of action advantage.  $\psi$  is the params of such advantage stream.
- $f_{\xi}$  is the shared convolutional encoder (network)



#### Multi-step Learning

- truncated n-step return from a given state  $S_t$ :  $R_t^{(n)} \equiv \sum_{k=0}^{n-1} \gamma_t^{(k)} R_{t+k+1}$
- Then, the multi-step variant of DQN is then defined by minimizing the alternative loss (same thing as before, just changed  $R_t$  to be  $R_t^{(n)}$  $(R_t^{(n)} + \gamma_t^{(n)} \max_{a'} q_{\overline{\theta}}(S_{t+n}, a') - q_{\theta}(S_t, A_t))^2$
- Multi-step targets with suitably tuned n often lead to faster learning

# Distributional RL

- learn to approximate the distribution of returns instead of the expected return.
- of returns instead
- Maximize over the *expected* sum of future rewards.
- New Bellman:  $V^{\pi}(x) \equiv \mathbb{E}_{P^{\pi}}[\sum_{t} \gamma^{t} R(x_{t}) | x_{0} = x] = \mathbb{E}R(x) + \mathbb{E}_{x' \sim P^{\pi}} V^{\pi}(x')$
- Future expectation makes modeling even more complex! We use a hidden variable z to model the value distribution:
- $V^{\pi}(x) = \mathbb{E}Z^{\pi}(x) = \mathbb{E}[R(x) + \gamma Z^{\pi}(x')]$ , where  $x' \sim P^{\pi}(\cdot | x)$
- Discrete distributions C51 to measure. Simply replace the Q-output in DQN to a softmax over 51 probabilities.(more bins, better performance!)



## Distributional RL

• The equations for a distributional variance of Q-learning: constructing a new support  $d_t$  by minimizing the KL divergence between  $d_t$  and target  $d_t'$ .

$$d'_{t} \equiv (R_{t+1} + \gamma_{t+1} \boldsymbol{z}, \boldsymbol{p}_{\overline{\theta}}(S_{t+1}, \overline{a}_{t+1}^{*})),$$
$$D_{\mathrm{KL}}(\Phi_{\boldsymbol{z}} d'_{t} || d_{t}).$$



## Noisy Nets

- where many actions must be executed to collect the first reward (Montezuma's Revenge), what do we do?
- Add noise for better exploration!

$$\boldsymbol{y} = (\boldsymbol{b} + \mathbf{W}\boldsymbol{x}) + (\boldsymbol{b}_{noisy} \odot \boldsymbol{\epsilon}^{\boldsymbol{b}} + (\mathbf{W}_{noisy} \odot \boldsymbol{\epsilon}^{\boldsymbol{w}})\boldsymbol{x}), \quad (4)$$

- Over time, the network can learn to ignore the noisy stream at different rates in different parts of the state space
- self-annealing



#### Now, group together!



# Recap

$$(R_{t+1} + \gamma_{t+1} \max_{a'} q_{\overline{\theta}}(S_{t+1}, a') - q_{\theta}(S_t, A_t))^2, \quad (1)$$

$$R_t^{(n)} \equiv \sum_{k=0}^{n-1} \gamma_t^{(k)} R_{t+k+1}. \quad (2)$$

$$d'_t \equiv (R_{t+1} + \gamma_{t+1} \boldsymbol{z}, \ \boldsymbol{p}_{\overline{\theta}}(S_{t+1}, \overline{a}^*_{t+1})),$$

$$D_{\mathrm{KL}}(\Phi_{\boldsymbol{z}} d'_t || d_t). \quad (3)$$

$$\boldsymbol{y} = (\boldsymbol{b} + \mathbf{W} \boldsymbol{x}) + (\boldsymbol{b}_{noisy} \odot \epsilon^b + (\mathbf{W}_{noisy} \odot \epsilon^w) \boldsymbol{x}), \quad (4)$$



## Experiments:

• "All Rainbow's components have a number of hyper-parameters. The combinatorial space of hyper-parameters is too large for an exhaustive search, therefore we have performed limited tuning."

| Agent                | no-ops | human starts |
|----------------------|--------|--------------|
| DQN                  | 79%    | 68%          |
| DDQN (*)             | 117%   | 110%         |
| Prioritized DDQN (*) | 140%   | 128%         |
| Dueling DDQN (*)     | 151%   | 117%         |
| A3C (*)              | -      | 116%         |
| Noisy DQN            | 118%   | 102%         |
| Distributional DQN   | 185%   | 125%         |
| Rainbow              | 231%   | 153%         |



# Experiments:

- Double DQN is redundant?
- Is it just useless or the functionality is shadowed by the combination of other tricks?



• Pros:

All tricks together, SOTA performance!

A good base to construct your other algorithms on

• Cons:

Hard to tune, hard to implement No clue how to make it more efficient

#### IMPALA: Scalable **Distributed** Deep-RL with Importance Weighted Actor-Learner Architectures



#### IMPALA





#### V trace correction

$$v_s \stackrel{\text{def}}{=} V(x_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \Big( \prod_{i=s}^{t-1} c_i \Big) \delta_t V, \quad (1)$$
  
where  $\delta_t V \stackrel{\text{def}}{=} \rho_t \Big( r_t + \gamma V(x_{t+1}) - V(x_t) \Big)$ 

$$c_i \stackrel{\text{def}}{=} \min\left(\bar{c}, \frac{\pi(a_i|x_i)}{\mu(a_i|x_i)}\right)$$



## My Questions:

• Where were they from?

$$(R_{t+1} + \gamma_{t+1} \max_{a'} q_{\overline{\theta}}(S_{t+1}, a') - q_{\theta}(S_t, A_t))^2, \quad (1)$$

$$R_t^{(n)} \equiv \sum_{k=0}^{n-1} \gamma_t^{(k)} R_{t+k+1}. \quad (2)$$

$$d'_t \equiv (R_{t+1} + \gamma_{t+1} z, \ p_{\overline{\theta}}(S_{t+1}, \overline{a}_{t+1}^*)),$$

$$D_{\text{KL}}(\Phi_z d'_t || d_t). \quad (3)$$

$$\boldsymbol{y} = (\boldsymbol{b} + \mathbf{W}\boldsymbol{x}) + (\boldsymbol{b}_{noisy} \odot \boldsymbol{\epsilon}^{b} + (\mathbf{W}_{noisy} \odot \boldsymbol{\epsilon}^{w})\boldsymbol{x}), \quad (4)$$

• What is the most important contribution of IMPALA? (hint: distributed)