Soft Actor-Critic

Zikun Chen, Minghan Li Jan. 28, 2020

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, Sergey Levine

Outline

- Problem: Sample Efficiency
- Solution: Off-Policy Learning
 - On-Policy vs Off-Policy
 - RL Basics Recap
 - Off-Policy Learning Algorithms
- Problem: Robustness
- Solution: Maximum Entropy RL
 - Definition (Control as Inference)
 - Soft Policy Iteration
 - Soft Actor-Critic

Contributions

- An off-policy maximum entropy deep reinforcement learning algorithm
 - Sample-efficient
 - Robustness to noise, random seed and hyperparameters
 - Scale to high-dimensional observation/action space
- Theoretical Results
 - Theoretical framework of soft policy iteration
 - Derivation of soft-actor critic algorithm
- Empirical Results
 - SAC outperforms SOTA model-free deep RL methods, including DDPG, PPO and Soft Q-learning, in terms of the policy's optimality, sample complexity and stability.

Outline

- Problem: Sample Efficiency
- Solution: Off-Policy Learning
 - On-Policy vs Off-Policy
 - RL Basics Recap
 - Off-Policy Learning Algorithms

- Number of times the agent must interact with the environment in order to learn a task
- Good sample complexity is the first prerequisite for successful skill acquisition.
- Learning skills in the real world can take a substantial amount of time
 - can get damaged through trial and error

- "Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection", Levine et al., 2016
 - 14 robot arms learning to grasp in parallel
 - o objects started being picked up at around 20,000 grasps

https://spectrum.ieee.org/automaton/robotics/ artificial-intelligence/google-large-scale-roboti c-grasping-project

Observing the behavior of the robot after over 800,000 grasp attempts, which is equivalent to about 3000 robothours of practice, we can see the beginnings of intelligent reactive behaviors

- Solution?
- Off-Policy Learning!

Background: On-Policy vs. Off-Policy

- On-policy learning: use the deterministic outcomes or samples from the target policy to train the algorithm
 - has low sample efficiency (TRPO, PPO, A3C)
 - require new samples to be collected for nearly every update to the policy
 - becomes extremely expensive when the task is complex
- Off-policy methods: training on a distribution of transitions or episodes produced by a different behavior policy rather than that produced by the target policy
 - Does not require full trajectories and can reuse any past episodes (experience replay) for much better sample efficiency
 - relatively straightforward for Q-learning based methods

Background: Bellman Equation

• Value Function: How good is a state?

$$V(s) = \mathbb{E}[G_t | S_t = s]$$

= $\mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$
= $\mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) | S_t = s]$
= $\mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s]$
= $\mathbb{E}[R_{t+1} + \gamma V(S_{t+1}) | S_t = s]$

temporal difference target

• Similarly, for Q-Function: How good is a state-action pair?

$$Q(s, a) = \mathbb{E}[R_{t+1} + \gamma V(S_{t+1}) \mid S_t = s, A_t = a] \\= \mathbb{E}[R_{t+1} + \gamma \mathbb{E}_{a \sim \pi} Q(S_{t+1}, a) \mid S_t = s, A_t = a]$$

Background: Value-Based Method

.

• ...,
$$S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}, ...$$
 (on-policy):
 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$

- Q-Learning (off-policy) $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_t, A_t))$
- DQN, Minh et al., 2015

$$\mathcal{L}(\theta) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta^{-}) - Q(s,a;\theta) \right)^2 \right]$$

- Function Approximation
- Experience Replay: samples randomly drawn from replay memory
- Doesn't scale to continuous action space

Background: Policy-Based Method (Actor-Critic)

- **Critic**: updates value function parameters w and depending on the algorithm it could be action-value Q(a|s; w) or state-value V(s; w).
- Actor: updates policy parameters θ , in the direction suggested by the critic, $\pi(a|s; \theta)$.

$$\nabla \mathcal{J}(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla \ln \pi(a|s,\theta) Q_{\pi}(s,a)] \quad \text{policy gradient}$$

$$\theta \leftarrow \theta + \alpha_{\theta} Q(s, a; w) \nabla_{\theta} \ln \pi(a|s; \theta)$$
 update actor

 $G_{t:t+1} = r_t + \gamma Q(s', a'; w) - Q(s, a; w)$ correction for action-value

 $w \leftarrow w + \alpha_w G_{t:t+1} \nabla_w Q(s, a; w)$. update critic

Prior Work: DDPG

- DDPG = DQN + DPG (Lillicrap et al., 2015)
 - off-policy actor-critic method that learns a deterministic policy in <u>continuous</u> domain
 - exploration noise added to the deterministic policy when select action
 - difficult to stabilize and brittle to hyperparameters (Duan et al., 2016, Henderson et al., 2017)
 - unscalable to complex tasks with high dimensions (Gu et al., 2017)

Outline

- Problem: Sample Efficiency
- Solution: Off-Policy Learning
 - On-Policy vs Off-Policy
 - RL Basics Recap
 - Off-Policy Learning Algorithms

Problem: Robustness

- Solution: Maximum Entropy RL
 - Definition (Control as Inference)
 - Soft Policy Iteration
 - Soft Actor-Critic

Main Problems: Robustness

• Training is sensitive to randomness in the environment, initialization of the policy and the algorithm implementation

Main Problems: Robustness

• Knowing only one way to act makes agents vulnerable to environmental changes that are common in the real-world

Background: Control as Inference

Traditional Graph of MDP

Graphical Model with Optimality Variables

Background: Control as Inference

Normal trajectory distribution

$$p(\tau) = p(\mathbf{s}_1, \mathbf{a}_t, \dots, \mathbf{s}_T, \mathbf{a}_T | \theta) = p(\mathbf{s}_1) \prod_{t=1}^T p(\mathbf{a}_t | \mathbf{s}_t, \theta) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t).$$

Posterior trajectory distribution

$$p(\mathcal{O}_t = 1 | \mathbf{s}_t, \mathbf{a}_t) = \exp(r(\mathbf{s}_t, \mathbf{a}_t)).$$

$$p(\tau | \mathbf{o}_{1:T}) \propto p(\tau, \mathbf{o}_{1:T}) = p(\mathbf{s}_1) \prod_{t=1}^T p(\mathcal{O}_t = 1 | \mathbf{s}_t, \mathbf{a}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$
$$= p(\mathbf{s}_1) \prod_{t=1}^T \exp(r(\mathbf{s}_t, \mathbf{a}_t)) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$
$$= \left[p(\mathbf{s}_1) \prod_{t=1}^T p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \right] \exp\left(\sum_{t=1}^T r(\mathbf{s}_t, \mathbf{a}_t)\right)$$

Background: Control as Inference

Variational Inference

$$D_{\mathrm{KL}}(\hat{p}(\tau)||p(\tau)) = -E_{\tau \sim \hat{p}(\tau)} [\log p(\tau) - \log \hat{p}(\tau)].$$

$$-D_{\mathrm{KL}}(\hat{p}(\tau)||p(\tau)) = E_{\tau \sim \hat{p}(\tau)} \left[\log p(\mathbf{s}_{1}) + \sum_{t=1}^{T} (\log p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t}) + r(\mathbf{s}_{t}, \mathbf{a}_{t})) - \log p(\mathbf{s}_{1}) - \sum_{t=1}^{T} (\log p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t}) + \log \pi(\mathbf{a}_{t}|\mathbf{s}_{t})) \right]$$

$$= E_{\tau \sim \hat{p}(\tau)} \left[\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) - \log \pi(\mathbf{a}_{t}|\mathbf{s}_{t}) \right]$$

$$= \sum_{t=1}^{T} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim \hat{p}(\mathbf{s}_{t}, \mathbf{a}_{t}))} [r(\mathbf{s}_{t}, \mathbf{a}_{t}) - \log \pi(\mathbf{a}_{t}|\mathbf{s}_{t})]$$

$$= \sum_{t=1}^{T} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim \hat{p}(\mathbf{s}_{t}, \mathbf{a}_{t}))} [r(\mathbf{s}_{t}, \mathbf{a}_{t})] + E_{\mathbf{s}_{t} \sim \hat{p}(\mathbf{s}_{t})} [\mathcal{H}(\pi(\mathbf{a}_{t}|\mathbf{s}_{t}))].$$

Background: Max Entropy RL

Conventional RL Objective - Expected Reward

$$\sum_{t} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} [r(\mathbf{s}_t, \mathbf{a}_t)]$$

Maximum Entropy RL Objective - Expected Reward + Entropy of Policy

$$\sum_{t} \mathbb{E}_{(\mathbf{s}_{t},\mathbf{a}_{t})\sim\rho_{\pi}} \left[r(\mathbf{s}_{t},\mathbf{a}_{t}) + \alpha \mathcal{H}(\pi(\cdot|\mathbf{s}_{t})) \right]$$

Entropy of a RV x

$$H(P) = \mathop{\mathrm{E}}_{x \sim P} \left[-\log P(x) \right]'$$

Max Entropy RL

• MaxEnt RL agent can capture different modes of optimality to improve robustness against environmental changes

https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

Max Entropy RL

$$\begin{split} \min_{\pi} D_{KL}[\pi(\cdot|s_0)||\exp(Q(s_0,\cdot))] \\ &= \min_{\pi} E_{\pi}[\log \frac{\pi(a_0|s_0)}{\exp(Q(s_0,a_0))}] \\ &= \max_{\pi} E_{\pi}[Q(s_0,a_0) - \log \pi(a_0|s_0)] \\ &= \max_{\pi} E_{\pi}[\sum_{t} r(s_t,a_t) + \mathcal{H}(\pi(\cdot|s_0))|s_0] \\ &= J_{MaxEnt}(\pi(\cdot|s_0)) \end{split}$$

Prior Work: Soft Q-Learning

- Soft Q-Learning (Haarnoja et al., 2017)
 - off-policy algorithms under MaxEnt RL objective
 - Learns Q* directly
 - \circ sample policy from exp(Q*) is intractable for continuous actions
 - use approximate inference methods to sample
 - Stein variational gradient descent
 - not true actor-critic

 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_{a \in \mathcal{A}} Q(S_{t+1}, a) - Q(S_t, A_t))$

$$Q_{\text{soft}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \leftarrow r_{t} + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p_{\mathbf{s}}} \left[V_{\text{soft}}(\mathbf{s}_{t+1}) \right], \ \forall \mathbf{s}_{t}, \mathbf{a}_{t}$$
$$V_{\text{soft}}(\mathbf{s}_{t}) \leftarrow \alpha \log \int_{\mathcal{A}} \exp \left(\frac{1}{\alpha} Q_{\text{soft}}(\mathbf{s}_{t}, \mathbf{a}') \right) d\mathbf{a}', \ \forall \mathbf{s}_{t}$$

SAC: Contributions

- One of the most efficient model-free algorithms
 - SOTA off-policy
 - well suited for real world robotics learning
- Can learn stochastic policy on continuous action domain
- Robust to noise
- Ingredients:
 - Actor-critic architecture with seperate policy and value function networks
 - Off-policy formulation to reuse of previously collected data for efficiency
 - Entropy-constrained objective to encourage stability and exploration

Soft Policy Iteration: Policy Evaluation

- policy evaluation: compute value of π according to Max Entropy RL Objective
- modified Bellman backup operator T:

$$\mathcal{T}^{\pi}Q(\mathbf{s}_{t}, \mathbf{a}_{t}) \triangleq r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V(\mathbf{s}_{t+1}) \right]$$
$$V(\mathbf{s}_{t}) = \mathbb{E}_{\mathbf{a}_{t} \sim \pi} \left[Q(\mathbf{s}_{t}, \mathbf{a}_{t}) - \alpha \log \pi(\mathbf{a}_{t} | \mathbf{s}_{t}) \right]$$

• Lemma 1: Contraction Mapping for Soft Bellman Updates

$$Q^{k+1} = \mathcal{T}^{\pi}Q^k$$
 , converges to the soft Q-function of T

Soft Policy Iteration: Policy Improvement

- policy improvement: update policy towards the exponential of the new soft Q-function
- modified Bellman backup operator T:
 - \circ choose tractable family of distributions big Π
 - \circ choose KL divergence to project the improved policy into big Π

$$\pi_{\text{new}} = \arg\min_{\pi' \in \Pi} D_{\text{KL}} \left(\pi'(\cdot | \mathbf{s}_t) \left\| \frac{\exp\left(\frac{1}{\alpha} Q^{\pi_{\text{old}}}(\mathbf{s}_t, \cdot)\right)}{Z^{\pi_{\text{old}}}(\mathbf{s}_t)} \right) \right) \xrightarrow{\mathcal{I}_{Q(\mathbf{s}_t, \mathbf{a}_t)}}{\mathbf{s}_t} \left(\frac{\mathcal{I}_{Q(\mathbf{s}_t, \mathbf{a}_t)}}{\mathcal{I}_{Q(\mathbf{s}_t, \mathbf{a}_t)}} \right)$$

• Lemma 2

$$Q^{\pi_{ ext{new}}}(\mathbf{s}_t,\mathbf{a}_t) \geq Q^{\pi_{ ext{old}}}(\mathbf{s}_t,\mathbf{a}_t)$$
 for any state action pair

Soft Policy Iteration

- soft policy iteration: soft policy evaluation <-> soft policy improvement
- Theorem 1: Repeated application of soft policy evaluation and soft policy improvement from any policy $\pi \in \Pi$ converges to the optimal MaxEnt policy among all policies in Π
 - \circ exact form applicable only in discrete case
 - need function approximation to represent Q-values in continuous domains
 - -> Soft Actor-Critic (SAC)!

SAC

 $Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t)$ $\pi_{\phi}(\mathbf{a}_t|\mathbf{s}_t)$ $\hat{\nabla}_{\theta} J_Q(\theta)$ $J_O(\theta)$ $J_{\pi}(\phi) = \hat{\nabla}_{\phi} J_{\pi}(\phi)$

parameterized soft Q-function

• e.g.neural network

parameterized tractable policy

• e.g. Gaussian with mean and covariances given by neural networks

soft Q-function objective and its stochastic gradient wrt its parameters

policy objective and stochastic gradient wrt its parameters

SAC: Objectives and Optimization

- Critic Soft Q-function
 - minimize square error
 - $\bar{\theta}$ exponential moving average of soft Q-function weights to stabilize training (DQN)

$$J_Q(\theta) = \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \mathcal{D}} \left[\frac{1}{2} \left(Q_\theta(\mathbf{s}_t, \mathbf{a}_t) - \left(r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V_{\bar{\theta}}(\mathbf{s}_{t+1}) \right] \right) \right)^2 \right]$$
$$V(\mathbf{s}_t) = \mathbb{E}_{\mathbf{a}_t \sim \pi} \left[Q(\mathbf{s}_t, \mathbf{a}_t) - \alpha \log \pi(\mathbf{a}_t | \mathbf{s}_t) \right]$$

 $\hat{\nabla}_{\theta} J_Q(\theta) = \nabla_{\theta} Q_{\theta}(\mathbf{a}_t, \mathbf{s}_t) \left(Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - \left(r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \left(Q_{\bar{\theta}}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) - \alpha \log \left(\pi_{\phi}(\mathbf{a}_{t+1} | \mathbf{s}_{t+1}) \right) \right) \right)$

SAC: Objectives and Optimization

• Actor - Policy
$$\pi_{\text{new}} = \arg\min_{\pi' \in \Pi} D_{\text{KL}} \left(\pi'(\cdot | \mathbf{s}_t) \left\| \frac{\exp\left(\frac{1}{\alpha} Q^{\pi_{\text{old}}}(\mathbf{s}_t, \cdot)\right)}{Z^{\pi_{\text{old}}}(\mathbf{s}_t)} \right)$$

• multiply by alpha and ignoring the normalization Z

$$J_{\pi}(\phi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\phi}} \left[\alpha \log \left(\pi_{\phi}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) - Q_{\theta}(\mathbf{s}_{t}, \mathbf{s}_{t}) \right] \right]$$

- reparameterize with neural network f $\mathbf{a}_t = f_{\phi}(\epsilon_t; \mathbf{s}_t)$
 - epsilon: input noise vector, sampled from a fixed distribution (spherical Gaussian)

$$J_{\pi}(\phi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}, \epsilon_{t} \sim \mathcal{N}} \left[\alpha \log \pi_{\phi}(f_{\phi}(\epsilon_{t}; \mathbf{s}_{t}) | \mathbf{s}_{t}) - Q_{\theta}(\mathbf{s}_{t}, f_{\phi}(\epsilon_{t}; \mathbf{s}_{t})) \right]$$
$$\hat{\nabla}_{\phi} J_{\pi}(\phi) = \nabla_{\phi} \alpha \log \left(\pi_{\phi}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) + \left(\nabla_{\mathbf{a}_{t}} \alpha \log \left(\pi_{\phi}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) - \nabla_{\mathbf{a}_{t}} Q(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \nabla_{\phi} f_{\phi}(\epsilon_{t}; \mathbf{s}_{t})$$

Unbiased gradient estimator that extends DDPG stype policy gradients to any tractable stochastic policy

SAC: Algorithm

Note

- Original paper learns V to stabilize training
- But in the second paper, V is not learned (reasons unclear)

Experimental Results

- Tasks
 - A range of continuous control tasks from the OpenAI gym benchmark suite
 - RL-Lab implementation of the Humanoid task
 - The easier tasks can be solved by a wide range of different algorithms, the more complex benchmarks, such as the 21-dimensional Humanoid (rllab) are exceptionally difficult to solve with off-policy algorithms.
- Baselines:
 - DDPG, SQL, PPO, TD3 (concurrent)
 - TD3 is an extension to DDPG that first applied the double Q-learning trick to continuous control along with other improvements.

SAC: Results

Experimental Results: Ablation Study

- How does the stochasticity of the policy and entropy maximization affect the performance?
- Comparison with a deterministic variant of SAC that does not maximize the entropy and that closely resembles DDPG

Experimental Results: Hyperparameter Sensitivity

https://arxiv.org/abs/1801.01290

Limitation

- Unfortunately, SAC also suffers from brittleness to the alpha temperature hyperparameter that controls exploration
 - -> automatic temperature tuning!

Soft Actor-Critic Algorithms and Applications

Thomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Tikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, Sergey Levine

Contributions

• Adaptive temperature coefficient

$$\sum_{t} \mathbb{E}_{(\mathbf{s}_{t},\mathbf{a}_{t})\sim\rho_{\pi}} \left[r(\mathbf{s}_{t},\mathbf{a}_{t}) + \alpha \mathcal{H}(\pi(\cdot|\mathbf{s}_{t})) \right]$$

• Extend to real-world tasks such as locomotion for a quadrupedal robot and robotic manipulation with a dexterous hand

- Dexterous Hand Manipulations
- 20 hour end-to-end learning
- valve position as input: SAC 3 hours vs. PPO 7.4 hours

Automatic Temperature Tuning

- Choosing the optimal temperature is non-trivial (tuned for each task)
- Constrained optimization problem:

$$\max \sum_{t} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi(\cdot | \mathbf{s}_t)) \right]$$

$$\max_{\pi_{0:T}} \mathbb{E}_{\rho_{\pi}} \left[\sum_{t=0}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \text{ s.t. } \mathbb{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim \rho_{\pi}} \left[-\log(\pi_{t}(\mathbf{a}_{t} | \mathbf{s}_{t})) \right] \geq \mathcal{H} \ \forall t$$

Dual Problem for the Constrained Optimization

Unroll the expectation

$$\max_{\pi_0} \left(\mathbb{E}\left[r(\mathbf{s}_0, \mathbf{a}_0) \right] + \max_{\pi_1} \left(\mathbb{E}\left[\dots \right] + \max_{\pi_T} \mathbb{E}\left[r(\mathbf{s}_T, \mathbf{a}_T) \right] \right) \right)$$

For the last time step in the trajectory

$$\max_{\pi_T} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[r(\mathbf{s}_T, \mathbf{a}_T) \right] = \min_{\alpha_T \ge 0} \max_{\pi_T} \mathbb{E} \left[r(\mathbf{s}_T, \mathbf{a}_T) - \alpha_T \log \pi(\mathbf{a}_T | \mathbf{s}_T) \right] - \alpha_T \mathcal{H}_{\mathbf{s}_T}$$

$$\arg\min_{\alpha_T} \mathbb{E}_{\mathbf{s}_t, \mathbf{a}_t \sim \pi_t^*} \left[-\alpha_T \log \pi_T^*(\mathbf{a}_T | \mathbf{s}_T; \alpha_T) - \alpha_T \mathcal{H} \right].$$

Dual Problem for the Constrained Optimization

Similarly, for the previous time step

$$\max_{\pi_{T-1}} \left(\mathbb{E} \left[r(\mathbf{s}_{T-1}, \mathbf{a}_{T-1}) \right] + \max_{\pi_T} \mathbb{E} \left[r(\mathbf{s}_T, \mathbf{a}_T) \right] \right)$$
(16)
$$= \max_{\pi_{T-1}} \left(Q_{T-1}^*(\mathbf{s}_{T-1}, \mathbf{a}_{T-1}) - \alpha_T \mathcal{H} \right)$$
$$= \min_{\alpha_{T-1} \ge 0} \max_{\pi_{T-1}} \left(\mathbb{E} \left[Q_{T-1}^*(\mathbf{s}_{T-1}, \mathbf{a}_{T-1}) \right] - \mathbb{E} \left[\alpha_{T-1} \log \pi(\mathbf{a}_{T-1} | \mathbf{s}_{T-1}) \right] - \alpha_{T-1} \mathcal{H} \right) + \alpha_T^* \mathcal{H}.$$

$$\alpha_t^* = \arg\min_{\alpha_t} \mathbb{E}_{\mathbf{a}_t \sim \pi_t^*} \left[-\alpha_t \log \pi_t^*(\mathbf{a}_t | \mathbf{s}_t; \alpha_t) - \alpha_t \bar{\mathcal{H}} \right]$$

Algorithm 1 Soft Actor-Critic

for each iteration do

for each environment step do

$$\mathbf{a}_{t} \sim \pi_{\phi}(\mathbf{a}_{t}|\mathbf{s}_{t}) \\ \mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t}) \\ \mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_{t}, \mathbf{a}_{t}, r(\mathbf{s}_{t}, \mathbf{a}_{t}), \mathbf{s}_{t+1})\}$$

end for

for each gradient step do

$$\begin{array}{ll} \theta_{i} \leftarrow \theta_{i} - \lambda_{Q} \hat{\nabla}_{\theta_{i}} J_{Q}(\theta_{i}) \text{ for } i \in \{1, 2\} \\ \phi \leftarrow \phi - \lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi) \\ \alpha \leftarrow \alpha - \lambda \hat{\nabla}_{\alpha} J(\alpha) \\ \bar{\theta}_{i} \leftarrow \tau \theta_{i} + (1 - \tau) \bar{\theta}_{i} \text{ for } i \in \{1, 2\} \\ \text{end for} \\ \text{exponential moving average} \\ \text{end for} \end{array}$$

Output: θ_1, θ_2, ϕ

Initial parameters
 Initialize target network weights
 Initialize an empty replay pool

Sample action from the policy
 Sample transition from the environment
 Store the transition in the replay pool

Update the Q-function parameters
 Update policy weights
 Adjust temperature
 Update target network weights

Optimized parameters

Experimental Results: RL Lab

Figure 1: Training curves on continuous control benchmarks. Soft actor-critic (blue and yellow) performs consistently across all tasks and outperforming both on-policy and off-policy methods in the most challenging tasks.

Experimental Results: Robustness

• Lack of experiments on hard-exploration problem

- Lack of experiments on hard-exploration problem
- Approximating a multi-modal Boltzmann distribution with a unimodal Gaussian

- Lack of experiments on hard-exploration problem
- Approximating a multi-modal Boltzmann distribution with a unimodal Gaussian
- High-variance using automatic temperature tuning

- Lack of experiments on hard-exploration problem
- Approximating a multi-modal Boltzmann distribution with a unimodal Gaussian
- High-variance using automatic temperature tuning

Recap: SAC

- An off-policy maximum entropy deep reinforcement learning algorithm
 - Sample-efficient
 - Scale to high-dimensional observation/action space
 - Robustness to random seed, noise and etc.
- Theoretical Results
 - Convergence of soft policy iteration
 - Derivation of soft-actor critic algorithm
- Empirical Results
 - SAC outperforms SOTA model-free deep RL methods, including DDPG, PPO and Soft Q-learning, in terms of the policy's optimality, sample complexity and robustness.

Questions to test your understanding

- What is the objective in maximum entropy reinforcement learning?
- Why are off-policy methods more sample-efficient compared to on-policy methods?
- Why do we want the policy to be close to the exponential transformation of Q-value?
- What is soft policy iteration?

Any Questions? Thank you!

Background: Q-Learning

- Q-Learning: use any behavioral policy to estimate the optimal Q* function that maximizes the future reward
 - Directly approximate Q* with Bellman Optimality Equation
 - Independent of policy being followed

Max Entropy RL

- Entropy $H(P) = \mathop{\mathrm{E}}_{x \sim P} \left[-\log P(x) \right]$
- Entropy-regularized Reinforcement Learning

$$\pi^* = \arg \max_{\pi} \mathop{\mathrm{E}}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t \left(R(s_t, a_t, s_{t+1}) + \alpha H\left(\pi(\cdot | s_t)\right) \right) \right]$$

• State Value Function & Value Function Q

$$V^{\pi}(s) = \mathop{\mathrm{E}}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(R(s_{t}, a_{t}, s_{t+1}) + \alpha H\left(\pi(\cdot|s_{t})\right) \right) \middle| s_{0} = s \right] \quad V^{\pi}(s) = \mathop{\mathrm{E}}_{a \sim \pi} \left[Q^{\pi}(s, a) \right] + \alpha H(\pi(\cdot|s_{t}))$$
$$Q^{\pi}(s, a) = \mathop{\mathrm{E}}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}, s_{t+1}) + \alpha \sum_{t=1}^{\infty} \gamma^{t} H\left(\pi(\cdot|s_{t})\right) \middle| s_{0} = s, a_{0} = a \right]$$

https://spinningup.openai.com/en/latest/algorithms/sac.html

- Need the ability to generalize to unseen environment and robustness against noisy real-world environment
- Robots get damaged in the physical world
 - requires sample-efficient learning
- Examples
 - Quadrupedal Locomotion in the Real World (2 hours of training)
 - Dexterous Hand Manipulations (20 hours end-to-end learning)

• Minitaur robot (Kenneally et al., 2016)

"first example of a DRL algorithm learning underactuated quadrupedal locomotion directly in the real world without any simulation or pretraining"

- Dexterous Hand Manipulations
- 20 hour end-to-end learning
- valve position as input: SAC 3 hours vs. PPO 7.4 hours

- Sample inefficient algorithms can be problematic when deployed in the real world
 - damage to robots/humans

Main Problems

widespread adoption of model-free DRL is hampered by:

- expensive in terms of sample complexity
 - simple tasks require millions of steps of data collection
 - high-dimensional observations/action space require substantially more
- brittle with respect to hyperparameters
 - learning rates, exploration constants
 - set carefully to achieve good results

Soft actor-critic

1. Q-function update

Update Q-function to evaluate current policy:

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \mathbb{E}_{\mathbf{s}' \sim p_{\mathbf{s}}, \mathbf{a}' \sim \pi} \left[Q(\mathbf{s}', \mathbf{a}') - \log \pi(\mathbf{a}' | \mathbf{s}') \right]$$

This converges to Q^{π} .

2. Update policy Update the policy with gradient of information projection:

$$\pi_{\text{new}} = \arg\min_{\pi'} \mathcal{D}_{\text{KL}} \left(\pi'(\,\cdot\,|\mathbf{s}) \, \middle\| \, \frac{1}{Z} \exp Q^{\pi_{\text{old}}}(\mathbf{s},\,\cdot\,) \right)$$

In practice, only take one gradient step on this objective

3. Interact with the world, collect more data

Haarnoja, Zhou, Abbeel, L., Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning. 2018