Asynchronous Methods for Deep Reinforcement

Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, Kavukcuoglu

> Topic: Actor Critic methods Presenter: Adelin Travers

Motivation

Learn from raw pixels, not states

Motivation

- Experience replay
 - Data from previous experiences stored in dedicated memory
- At each step:
 - Can batch data
 - Can sample randomly
- => Augments stability
 - reducing non-stationarity
 - decorelates updates

Problem

- Only off policy learning
 - Data generated from a previous policy.
- High memory usage
- High computational cost per interaction with the environment

Previous approaches based on compute parallelization:

- Specialized hardware such as GPU
- Massively distributed architectures

- Contributions
- Background
- Algorithms
- Experimental results
- Discussion
- Limitations and open issues

Contributions

- Investigate alternatives to replay memory
- Previous work parallelized agents and shared replay memory
- Propose to parallelize the learning experience
- Duplicate both the agents and environments
- Learning is shared among the agents but experience is not
 - Obtain a more stationary process and speed up exploration
- Demonstrate deep RL for value-, policy-based methods both Onand off-policy
- Divide by 2 the state of the art training time while on a single server's 16 CPUs

- Contributions
- Background
- Algorithms
- Experimental results
- Discussion
- Limitations and open issues

One-step Q-learning

$$L_i(\theta_i) = \mathbb{E}\left(r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i)\right)^2$$

N-step Q-learning

 $r_t + \gamma r_{t+1} + \dots + \gamma^{n-1} r_{t+n-1} + \max_a \gamma^n Q(s_{t+n}, a)$

- Actor-critic
- Reduce Monte-carlo policy gradients variance
- Combine Value based methods and policy gradients

[David Silver, RL Lectures]

• Parameterize the Q-value function

$$Q_w(s,a) pprox Q^{\pi_{ heta}}(s,a)$$

Approximate policy gradient

$$abla_{ heta} J(heta) pprox \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(s, a) \; Q_w(s, a)
ight] \ \Delta heta = lpha
abla_{ heta} \log \pi_{ heta}(s, a) \; Q_w(s, a)$$

[David Silver, RL Lectures]

- Critic can be a baseline
- Can take the value function
- Policy gradient on the advantage function

$$egin{aligned} & A^{\pi_{ heta}}(s,a) = Q^{\pi_{ heta}}(s,a) - V^{\pi_{ heta}}(s) \ &
abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(s,a) \; A^{\pi_{ heta}}(s,a)
ight] \end{aligned}$$

- Contributions
- Background
- Algorithms
- Experimental results
- Discussion
- Limitations and open issues

repeat

Take action a with ϵ -greedy policy based on $Q(s, a; \theta)$ Receive new state s' and reward r $y = \begin{cases} r & \text{for terminal } s' \\ r + \gamma \max_{a'} Q(s', a'; \theta^{-}) & \text{for non-terminal } s' \end{cases}$ Accumulate gradients wrt θ : $d\theta \leftarrow d\theta + \frac{\partial (y - Q(s,a;\theta))^2}{\partial \theta}$ s = s' $T \leftarrow T + 1$ and $t \leftarrow t + 1$ if $T \mod I_{target} == 0$ then Update the target network $\theta^- \leftarrow \theta$ end if if t mod $I_{AsyncUpdate} == 0$ or s is terminal then Perform asynchronous update of θ using $d\theta$. Clear gradients $d\theta \leftarrow 0$. end if until $T > T_{max}$

repeat

Take action a with ϵ -greedy policy based on $Q(s, a; \theta)$ Receive new state s' and reward r $y = \begin{cases} r & \text{for terminal } s' \\ r + \gamma \max_{a'} Q(s', a'; \theta^{-}) & \text{for non-terminal } s' \end{cases}$ Accumulate gradients wrt θ : $d\theta \leftarrow d\theta + \frac{\partial (y - Q(s,a;\theta))^2}{\partial \theta}$ s = s' $T \leftarrow T + 1$ and $t \leftarrow t + 1$ if $T \mod I_{target} == 0$ then Update the target network $\theta^- \leftarrow \theta$ end if if t mod $I_{AsyncUpdate} == 0$ or s is terminal then Perform asynchronous update of θ using $d\theta$. Clear gradients $d\theta \leftarrow 0$. end if until $T > T_{max}$

repeat

Take action a with ϵ -greedy policy based on $Q(s, a; \theta)$ Receive new state s' and reward r $\begin{array}{ll}r & \text{for terminal } s' \\ r + \gamma \max_{a'} Q(s', a'; \theta^{-}) & \text{for non-terminal } s' \end{array}$ y =Accumulate gradients wrt θ : $d\theta \leftarrow d\theta + \frac{\partial (y - Q(s, a; \theta))^2}{\partial \theta}$ $T \leftarrow T + 1$ and $t \leftarrow t + 1$ if $T \mod I_{target} == 0$ then Update the target network $\theta^- \leftarrow \theta$ end if if t mod $I_{AsyncUpdate} == 0$ or s is terminal then Perform asynchronous update of θ using $d\theta$. Clear gradients $d\theta \leftarrow 0$. end if until $T > T_{max}$

repeat

Take action a with ϵ -greedy policy based on $Q(s, a; \theta)$ Receive new state s' and reward r $y = \begin{cases} r & \text{for terminal } s' \\ r + \gamma \max_{a'} Q(s', a'; \theta^{-}) & \text{for non-terminal } s' \end{cases}$ Accumulate gradients wrt θ : $d\theta \leftarrow d\theta + \frac{\partial (y - Q(s,a;\theta))^2}{\partial \theta}$ s = s' $T \leftarrow T + 1$ and $t \leftarrow t + 1$ if $T \mod I_{target} == 0$ then Update the target network $\theta^- \leftarrow \theta$ end if if t mod $I_{AsyncUpdate} == 0$ or s is terminal then Perform asynchronous update of θ using $d\theta$. Clear gradients $d\theta \leftarrow 0$. end if until $T > T_{max}$

Algorithm: A3C

repeat

Reset gradients: $d\theta \leftarrow 0$ and $d\theta_v \leftarrow 0$. Synchronize thread-specific parameters $\theta' = \theta$ and $\theta'_v = \theta_v$ $t_{start} = t$ Get state s_t repeat Perform a_t according to policy $\pi(a_t|s_t;\theta')$ Receive reward r_t and new state s_{t+1} $t \leftarrow t + 1$ $T \leftarrow T + 1$ **until** terminal s_t or $t - t_{start} = t_{max}$ $R = \begin{cases} 0 & \text{for terminal } s_t \\ V(s_t, \theta'_v) & \text{for non-terminal } s_t // \text{Bootstrap from last state} \end{cases}$ for $i \in \{t - 1, ..., t_{start}\}$ do $\pi \leftarrow T_i + \gamma \pi$ Accumulate gradients wrt $\theta': d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i | s_i; \theta') (R - V(s_i; \theta'_v))$ Accumulate gradients wrt $\theta'_v: d\theta_v \leftarrow d\theta_v + \partial \left(R - V(s_i; \theta'_v)\right)^2 / \partial \theta'_v$ end for

Perform asynchronous update of θ using $d\theta$ and of θ_v using $d\theta_v$. until $T > T_{max}$

- Contributions
- Background
- Algorithms
- Experimental results
- Discussion
- Limitations and open issues

Experimental Results

All variants outperform DQN in training speed and performance

Experimental Results

Method	Training Time	Mean	Median
DQN	8 days on GPU	121.9%	47.5%
Gorila	4 days, 100 machines	215.2%	71.3%
D-DQN	8 days on GPU	332.9%	110.9%
Dueling D-DQN	8 days on GPU	343.8%	117.1%
Prioritized DQN	8 days on GPU	463.6%	127.6%
A3C, FF	1 day on CPU	344.1%	68.2%
A3C, FF	4 days on CPU	496.8%	116.6%
A3C, LSTM	4 days on CPU	623.0%	112.6%

2x speedup on CPU

- Contributions
- Background
- Algorithms
- Experimental results
- Discussion
- Limitations and open issues

Discussion

Method	Number of threads				
	1	2	4	8	16
1-step Q	1.0	3.0	6.3	13.3	24.1
1-step SARSA	1.0	2.8	5.9	13.1	22.1
n-step Q	1.0	2.7	5.9	10.7	17.2
A3C	1.0	2.1	3.7	6.9	12.5

Superlinear mean thread improvement for all methods but A3C

Discussion

Thread speedup is dependent on the games

Discussion

Capable of handling discrete and continuous state spaces

- Contributions
- Background
- Algorithms
- Experimental results
- Discussion
- Limitations and open issues

Limitations and Open Issues

- Performance very dependent on the game
- If interactions with the environment are expensive, limited success
 - Combine with experience replay?
- Forward view only
 - Backward view is more common in RL
- Better ways to estimate the advantage function
 - Generalized advantage estimation

Contributions (recap)

- Alternatives to replay memory
- Previous work parallelized replay memory/computation
- Parallelize the learning experience
- Duplicate both the agents and environments
- Learning is shared among the agents but experience is not
 - Obtain a more stationary process and speed up exploration
- Demonstrate deep RL for value-, policy-based methods both Onand off-policy
- Divide by 2 the state of the art training time while on a single server's 16 CPUs