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A Taxonomy of RL Algorithms

Image credit: OpenAI Spinning Up, https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#id20 

We are here! 

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#id20


Policy Gradients (Preliminaries)
1) Score function estimator (SF, also referred to as REINFORCE):

Remark:         can be either differentiable and non-differentiable functions  

Proof:
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1) Score function estimator (SF, also referred to as REINFORCE):

2)  Subtracting a control variate

Remark: if baseline is not a function of z 



Policy Gradients (PG)
Policy Gradient Theorem [1]: 

Subtract the Baseline - state-value function          
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Motivation - Problem in PG 

How to choose the step size?
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Motivation - Problem in PG 

How to choose the step size? too large?  1) bad policy -> 2) collected data under bad policy 

too small?  cannot leverage data sufficiently 

Cannot recover!



Motivation: Why trust region optimization?

Image credit: https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9

https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9


TRPO - What Loss to optimize?
- Original objective

- Improvement of new policy over old policy [1]

- Local approximation (visitation frequency is unknown)



TRPO - What Loss to optimize?
- Original objective

- Improvement of new policy over old policy [1]

- Local approximation (visitation frequency is unknown)



Proof: Relation between new and old policy:
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Surrogate Loss: Important sampling Perspective
Important Sampling:

Matches to first order for parameterized policy:
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Monotonic Improvement Result
- Find the lower bound in general stochastic gradient policies

- Optimized objective: maximize            guarantees          non-decreasing  
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Solving the Trust-Region Constrained Optimization

1. Compute a search direction, using a linear approximation to objective and 
quadratic approximation to the constraint

Conjugate gradient

2. Compute the maximal step length:             satisfies the KL divergence 

3. Line search to ensure the constraints and monotonic improvement
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Summary - TRPO
1. Original objective:

2. Policy improvement in terms of advantage function:

3. Surrogate loss to remove the dependency on the trajectories of new policy



Summary - TRPO
4. Find the lower bound (monotonic improvement guarantee)



Summary - TRPO
4. Find the lower bound (monotonic improvement guarantee)

5. Solve the optimization problem using linear search (Fish matrix and conjugate 
gradients)



Experiments (TRPO)

- Sample-based estimation of advantage functions
- Single path: sample initial state                  and generate trajectories following  
- Vine: pick a “roll-out” subset and sample multiple actions and trajectories (lower variance)

(a) Single Path                                      (b) Vine



Experiments (TRPO)

- Simulated Robotic Locomotion tasks
- Hopper: 12-dim state space
- Walker: 18-dim state space
- rewards: encourage fast and stable running (hopper); encourage smooth walke (walker) 



Experiments (TRPO)
- Atari games (discrete action space) - 0 / 1



Limitations of TRPO
- Hard to use with architectures with multiple outputs, e.g., policy and value 

function (need to weight different terms in distance metric)

- Empirically performs poorly on tasks requiring deep CNNs and RNNs, e.g., 
Atari benchmark (more suitable for locomotion)

- Conjugate gradients makes implementation more complicated than SGD



Proximal Policy Optimization (PPO)
- Clipped surrogate objective

TRPO:

PPO:



Proximal Policy Optimization (PPO)
- Adaptive KL Penalty Coefficient



Experiments (PPO)



Takeaways
- Trust region optimization guarantees the monotonic policy improvement.

- PPO is a first-order approximation of TRPO that is simpler to implement and 
achieves better empirical performance (both locomotion and Atari games).
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Questions
1. What is purpose of trust region? How we construct the trust region in TRPO

     (Hint: average KL divergence)

2. Why trust region optimization is not widely used in supervised learning? 

     (Hint: i.i.d. assumption)

3. What are the differences between PPO and TRPO? Why PPO is preferred? 

     (Hint: adaptive coefficient, surrogate loss function)
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