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Robotics in 2020

Formalism: MDPs with
● Unknown transition dynamics
● Continuous action space



Can reinforcement learning solve robotics?
Alpha Go Zero (Silver et al, Nature, 2017)

Dota 5 (OpenAI et al, 2019, https://cdn.openai.com/dota-2.pdf)

Alpha Star (Vinyals et al, Nature, 2019)

https://cdn.openai.com/dota-2.pdf


DDPG 
(Lillicrap et al, 2015)

A first “Deep” crack at RL with continuous action 
spaces
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Deterministic Policy Gradient
DPG (Silver et al., 2014)

- Finds deterministic policy
- Applicable to continuous action space

- Not learning-based, can we do better?
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DDPG
DDPG (Deep DPG) in one sentence:

● Extends DPG (Deterministic Policy Gradients, Silver et al., ‘14) using deep 
learning,

● borrowing tricks from Deep Q-Learning (Mnih et al., ‘13)

● Contribution: model-free, off-policy, actor-critic approach that allows us to 
better learn deterministic policies on continuous action space



A Taxonomy of RL Algorithms

Image credit: OpenAI Spinning Up, https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#id20 
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DDPG
DDPG (Deep DPG) is a model-free, off-policy, actor-critic algorithm that combines:

● DPG (Deterministic Policy Gradients, Silver et al., ‘14): works over continuous 
action domain, not learning-based

● DQN (Deep Q-Learning, Mnih et al., ‘13): learning-based, doesn’t work over 
continuous action domain
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Background - DPG
In Q-learning, we find deterministic policy by

Problem: In large discrete action space or continuous action space, we can’t plug 
in every possible action to find the optimal action!

Solution: Learn a function approximator for argmax, via gradient descent
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Background - DPG
● Goal: 

Derive a gradient update rule to learn deterministic policy

● Idea:

Adapt the stochastic policy gradient formulation for deterministic policies 
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Background - DPG
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Background - DPG
● Vanilla Stochastic Policy Gradient:

True value function is still not trivial to compute

Source: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf
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Background - DPG
● Vanilla Stochastic Policy Gradient:

True value function is still not trivial to compute, but we can approximate it 
with a parameterized function:

Source: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf
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Background - DPG
● Stochastic Policy Gradient (Actor-Critic)

Actor: Policy function

Critic: Value function        , which provides guidance to improve the actor  
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Background - DPG
Stochastic Policy Gradient:
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Background - DPG
Stochastic Policy Gradient:

Deterministic Policy Gradient: DDPG: Use deep learning 
to learn both functions!
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Background - DQN
How do we learn a value function with deep learning?

Q-Learning:

Parameterize Q with a neural network: Problem: t is parameterized 
by theta too! Moving target

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf


Background - DQN
How do we learn a value function with deep learning?

Q-Learning:

Parameterize Q with a neural network: Solution: Use a “target” 
network with frozen params

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf


Background - DQN
Deep Q-Learning:

Trick #1: Use a target network

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf


Background - DQN
Another problem: Sample Inefficiency
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Background - DQN
Another problem: Sample Inefficiency

Trick #2: Use a replay buffer to store past transitions and rewards

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf
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Background - DQN
Another problem: Sample Inefficiency

Trick #2: Use a replay buffer to store past transitions and rewards

Replay buffer also allows the algorithm to be off-policy, since we are sampling 
from the buffer instead of sampling a new trajectory according to current policy 
each time

Note that this trick is only possible with deterministic policies 

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf
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Background Summary
● DPG: Formulates an update rule for deterministic policies, so that we can 

learn deterministic policy on continuous action domain

Model-Free, Actor-Critic

● DQN: Enables learning value functions with neural nets , with two tricks:
○ Target Network
○ Replay Buffer - Off-Policy

● DDPG: Learn both the policy and the value function in DPG with neural 
networks, with DQN tricks!



Method - DDPG



DDPG Problem Setting
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DDPG Problem Setting

Policy (Actor) Network
Deterministic, Continuous Action Space

Value (Critic) Network

Target Policy and Value Networks
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Credit: Professor Animesh Garg
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Method

“Soft” target network update

Replay buffer



Method

Add noise for exploration



Method

Value Network Update



Method

Policy Network Update



Method



Method

DDPG: Policy Network, learned with Deterministic Policy Gradient



Experiments

Light Grey: Original DPG
Dark Grey: Target Network
Green: Target Network + Batch Norm
Blue: Target Network from pixel-only inputs



Experiments Do target networks and batch norm matter?

Light Grey: Original DPG
Dark Grey: Target Network
Green: Target Network + Batch Norm
Blue: Target Network from pixel-only inputs



Experiments DPGDDPG

Is DDPG 
better than 
DPG?
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Experiments DPGDDPG

Is DDPG 
better than 
DPG?

0: random policy

1: planning-based 
policy



Experiments DPGDDPG

DDPG still 
exhibits high 
variance



Experiments How well does Q estimate the true returns?



Discussion of Experiment Results
● Target Networks and Batch Normalization are crucial

● DDPG is able to learn tasks over continuous domain, with better performance 
than DPG

● Q values estimated are quite accurate (compared to the true expected 
reward) in simple tasks 



Discussion of Experiment Results
● Target Networks and Batch Normalization are crucial

● DDPG is able to learn tasks over continuous domain, with better performance 
than DPG, but the variance in performance is still pretty high

● Q values estimated are quite accurate (compared to the true expected 
reward) in simple tasks, but not so accurate for more complicated tasks



Toy example

Consider the following 
MDP:

1. Actor chooses 
action -1<a<1

2. Receives reward 1 
if action is negative, 
0 otherwise

What can we say about Q*(a) in this case?



DDPG

Critic 
Perspective

Actor 
Perspective

https://docs.google.com/file/d/1NiIhtERhYsBWQmGzHxFIWvELeqEgygqd/preview


Why did this work?
● What is the ground truth deterministic policy gradient?

0

=> The true DPG is 0 in this toy problem!



Gradient Descent on Q* (true policy gradient)

https://docs.google.com/file/d/1TK5V8B2Mq31UVs4NvCZJ2J3PnqvwR8BQ/preview


A Closer Look At Deterministic Policy Gradient
Claim: If in a finite-time MDP 

● State space is continuous
● Action space is continuous
● Reward function r(s, a) is piecewise constant w.r.t. s and a
● Transition dynamics are deterministic and differentiable

=> Then Q* is also piecewise constant and the DPG is 0.

Base case n=0 (aka s is terminal): 
Q*(s,a) = r(s,a)
=> Q*(s,a) is piecewise constant in for s terminal because r(s,a) is.

Quick proof: 
Induct on steps 
from terminal 
state



Inductive step: 
assume true for 
states n-1 steps 
from terminating 
and proof for 
states n steps from 
terminating



If the dynamics are 
deterministic and the reward 

function is discrete =>
Deterministic Policies have 

0 gradient
(monte carlo estimates become equivalent 

to random walk)



DDPG Follow-up
● Model the actor as the argmax of a convex function

○ Continuous Deep Q-Learning with Model-based Acceleration (Shixiang Gu, Timothy Lillicrap, 
Ilya Sutskever, Sergey Levine, ICML 2016)

○ Input Convex Neural Networks (Brandon Amos, Lei Xu, J. Zico Kolter, ICML 2017)

● Q-value overestimation
○ Addressing Function Approximation Error in Actor-Critic Methods (TD3) (Scott Fujimoto, Herke 

van Hoof, David Meger, ICML 2018)

● Stochastic policy search
○ Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic 

Actor (Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, Sergey Levine, ICML 2018)



A cool application of DDPG: Wayve
Learning to Drive in a Day (Alex Kendall 
et al, 2018)

http://www.youtube.com/watch?v=eRwTbRtnT1I


Conclusion
● DDPG = DPG + DQN

● Big Idea is to bypass finding the local max of Q in DQN by jointly training a 
second neural network (actor) to predict the local max of Q.

● Tricks that made DDPG possible:

○ Replay buffer, target networks (from DQN)

○ Batch normalization, to allow transfer between different RL tasks with different state scales

○ Directly add noise to policy output for exploration, due to continuous action domain

● Despite these tricks, DDPG can still be sensitive to hyperparameters. TD3 
and SAC offer better stability.



Questions
1. Write down the deterministic policy gradient.

a. Show that for gaussian action, REINFORCE reduces to DPG as sigma->0

2. What tricks does DDPG incorporate to make learning stable?



Thank you!
Joyce, Jonah



Motivation and Main Problem

1-4 slides

Should capture

- High level description of problem being solved (can use videos, images, etc)

- Why is that problem important?

- Why is that problem hard?

- High level idea of why prior work didn’t already solve this (Short description, later 
will go into details)



Contributions
Approximately one bullet, high level, for each of the following (the paper on 1 
slide).

- Problem the reading is discussing

- Why is it important and hard

- What is the key limitation of prior work

- What is the key insight(s) (try to do in 1-3) of the proposed work

- What did they demonstrate by this insight? (tighter theoretical bounds, state of 
the art performance on X, etc)



General Background
1 or more slides

The background someone needs to understand this paper

That wasn’t just covered in the chapter/survey reading presented earlier in class 
during same lecture (if there was such a presentation)



Problem Setting
1 or more slides

Problem Setup, Definitions, Notation

Be precise-- should be as formal as in the paper



Algorithm
Likely >1 slide

Describe algorithm or framework (pseudocode and flowcharts can help)

What is it trying to optimize?

Implementation details should be left out here, but may be discussed later if its 
relevant for limitations / experiments



Experimental Results
>=1 slide

State results

Show figures / tables / plots



Discussion of Results
>=1 slide

What conclusions are drawn from the results?

Are the stated conclusions fully supported by the results and references? If so, 
why? (Recap the relevant supporting evidences from the given results + refs)



Critique / Limitations / Open Issues
1 or more slides: What are the key limitations of the proposed approach / ideas? 
(e.g. does it require strong assumptions that are unlikely to be practical? 
Computationally expensive? Require a lot of data? Find only local optima? )

- If follow up work has addressed some of these limitations, include pointers to 
that. But don’t limit your discussion only to the problems / limitations that have 
already been addressed.



Contributions / Recap
Approximately one bullet for each of the following (the paper on 1 slide)

- Problem the reading is discussing

- Why is it important and hard

- What is the key limitation of prior work

- What is the key insight(s) (try to do in 1-3) of the proposed work

- What did they demonstrate by this insight? (tighter theoretical bounds, state of 
the art performance on X, etc)



“Deep” Q learning

 Mnih, 2013, https://arxiv.org/pdf/1312.5602.pdf

O(A) if discrete, O(n forward passes 
of Q) otherwise

O(A) if discrete, 
O(n forward 
passes of Q) 
otherwise

Not directly applicable to 
continuous action 
space!

https://arxiv.org/pdf/1312.5602.pdf

