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Bayesian RL: What

- Leverage Bayesian Information in RL problem
- Dynamics
- Solution space (Policy Class)

- Prior comes from System Designer



Bayesian RL: Why

- Exploration-Exploitation Trade-off
- Posterior: current representation of world

Max Gain wrt Current World Belief

- Regularization
- Prior over Value, Policy (params or class) or Model results in regularization/finite sample estimation.

- Handle Parametric Uncertainty
- Sampling based methods, aka frequentist, are computationally intractable or very conservative. 



- Selection of the correct Representation for Prior
- How to know ahead of time?
- Why is that knowledge not biased?

- Decision-making process over the information state
- Dynamic Programming over large state-action spaces was hard as it is!
- Doing this over distributions of states (beliefs) and distributions over latent dynamics  model

Computationally much harder!

Bayesian RL: Challenges





Preliminaries: POMDP
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Multi-armed Bandits (MAB)



Bayesian MAB

- In MAB model, only unknown is outcome probability P(*|a)

- Use Bayesian inference to learn the outcome probability from outcomes observed

- Parameterize outcome 

- Model our uncertainty about



Bayesian MAB - Bernoulli with Beta Prior



Bayesian MAB - Policy Selection

- We can represent our uncertainty about 𝝷 with posterior

- How to utilize this representation to select an adequate policy

- Want policy which minimizes regret
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UCB

- Employs optimistic policy to reduce chance of overlooking the best arm

- Starts by playing each arm once

- At time step t, plays arm a that maximizes the following (<r_a> is mean reward for arm a, t_a is 

number of times arm a has been played so far)



Bayes - UCB

- Extend UCB to Bayesian setting

- Keep posterior over expected reward of each arm

- At each step, choose the arm with the maximal posterior (1 - 𝜷_t)-quantile, where 𝜷_t is of order 1/t

- Using upper quantile instead of posterior mean serves the role of optimism, in the spirit of original 

UCB



Thompson Sampling

-                 Is posterior over

-  Sample a parameter            from posterior, and select optimal action with respect to

- Amounts to matching action selection probability to the posterior probability of each action being 

optimal

 



Thompson Sampling



Thompson Sampling - Beta Bernoulli















Slides from https://www.youtube.com/watch?v=qhqAYfPv7mQ

https://www.youtube.com/watch?v=qhqAYfPv7mQ
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Model-based Bayesian Reinforcement Learning

- Represent out uncertainty in model parameters of MDP

- Can be thought of as a POMDP where parameters represent unobservable states

- Keep joint posterior over model parameters and physical state

- Derive optimal policy with respect to this posterior



Bayes-Adaptive MDP

- Assume discrete action/state sets

- Transition probabilities consist of multinomial distributions

- Represent our uncertainty with respect to the true parameters of the multinomial distribution 

using a Dirichlet distribution



Bayes-Adaptive MDP



BAMDP Transition Model

- The transition model of the BAMDP captures transitions between hyper-states.

- By chain rule:



BAMDP Transition Model

- The transition model of the BAMDP captures transitions between hyper-states.

- By chain rule:

- First term: taking expectation over all possible transition functions



BAMDP Transition Model

- Second Term: update of the posterior φ to φ′ is deterministic



BAMDP Transition Model



BAMDP - Number of States

- Initially (at t = 0), there are only |S| stas, one per real MDP, state (we assume a single prior φ0 is 

specified). 

- Assuming a fully connected state space in the underlying MDP (i.e., P (s′ |s, a) > 0, ∀s, a), then at t = 

1 there are already |S|×|S| states, since φ → φ′ can increment the count of any one of its |S| 

components. So at horizon t, there are |S|^t reachable states in the BAMDP. 

- There are clear computational challenges in computing an optimal policy over all such beliefs.



BAMDP - Value Function

- Any policy which maximizes this expression is called Bayes Optimal



Bayes Optimal Planning

- Planning algorithms which seek a Bayes optimal policy are typically based on heuristics and/or 

approximations due to complexity noted above



Planning Algorithms Seeking Bayes Optimality

- Offline value approximation
- Compute policy apriori for any possible state and posterior
- Compute action selection strategy to optimize expected return over hyper-states of the BAMDP
- Intractable in most domains, these methods devise approximate algorithms which leverage structural 

constraints

- Online near myopic value approximation
- In practice may be fewer than |S|^t states; some trajectories will not be observed. 
- Interleave planning and execution on a step-by-step basis

- Methods with exploration bonus to achieve PAC Guarantees
- Select actions such as to incur only a small loss compared to the optimal Bayesian policy
- Typically employ Optimism in the Face of Uncertainty; when in doubt, an agent should act according to an 

optimistic model of the MDP
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Online - Bayesian Dynamic Programming

- Example of online near-myopic value 

approximation

- Generalization of TS

- Get estimate of Q function we would get if 

using transition model Pr(theta) directly

- Convergence to optimal policy is 

achievable

- Recent work has provided the first 

Bayesian regret bounds



Online - Tree Search Approximation - Forward 
Search

- Select actions using a more complete characterization of the model uncertainty

- Perform forward search in the space of hyper-states

- Consider current hyper-state, build fixed-depth forward search tree containing all hyper-states 

reachable within some fixe planning horizon, denoted d

- Use dynamic programming to approximate expected return of possible actions at the root of the 

hyper-state

- Action with highest return is executed, and then forward search is conducted on the next 

hyper-state



Online - Tree Search Approximation - Forward 
Search

- The top node contains 

the initial state 1 and 

the prior over the 

model 

- After the first action, 

the agent can end up 

in either state 1 or 

state 2, and updates 

its posterior 

accordingly



Online - Tree Search Approximation - Forward 
Search

- The main limitation of this approach is the fact that for most domains, a full forward search (i.e., 

without pruning of the search tree) can only be achieved over a very short decision horizon

- the number of nodes explored is

 

- Also requires specifying default value function at leaf nodes (since using dynamic programing back 

ups)



Online - Bayesian Sparse Sampling

- Estimates the optimal value function of a BAMDP (Equation 4.3) using Monte-Carlo sampling

- Instead of looking at all actions at each level of tree, actions are sampled according to their 

likelihood of being optimal, according to their Q-value distributions (as defined by Dirichlet 

posteriors)

- Next states are sampled according to the Dirichlet posterior on the model

- This approach requires repeatedly sampling from the posterior to find which action has the highest 

Q-value at each state node in the tree. This can be very time consuming, and thus, so far the 

approach has only been applied to small MDPs.
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Methods with exploration bonus to achieve 
PAC Guarantees

- Select actions such as to incur only a small loss compared to the optimal Bayesian policy

- Typically employ Optimism in the Face of Uncertainty; when in doubt, an agent should act 

according to an optimistic model of the MDP

- Shown to achieve bounded error in a polynomial number of steps using analysis from Probably 

Approximately Correct (PAC) literature



BFS3: Bayesian Forward Search Sparse 
Sampling

- Maintains both lower and upper bounds on the value of each state-action pair, and uses this 

information to direct forward rollouts in the search tree

- Consider a node s in the tree, then the next action is chosen greedily with respect to the 

upper-bound U(s,a)

- The next state s′ is selected to be the one with the largest difference between its lower and upper 

bound (weighted by the number of times it was visited)



BFS3: Bayesian Forward Search Sparse 
Sampling

Theorem [Asmuth, 2013]: With probability at least 1 − δ, the expected number of sub-ε-Bayes-optimal 

actions taken by BFS3 is at most BSA(S + 1)d/δt under assumptions on the accuracy of the prior and 

optimism of the underlying FSSS procedure.
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Offline - Bayesian Exploration Exploitation 
Tradeoff in LEarning (BEETLE)

- Optimal value function for a finite-horizon POMDP can be shown to be piecewise-linear and 

convex; can be represented by a finite set of linear segments 

- The value of a given αi at a belief bt is evaluated as follows:



Offline - Bayesian Exploration Exploitation 
Tradeoff in LEarning (BEETLE)

- Hyper-states (s, ɸ) are sampled from random interactions with BAMDP model

- An equivalent continuous POMDP is solved assuming b = (s, ɸ) is a belief state in that POMDP

- The set of 𝜶-functions are constructed incrementally applying Bellman updates at the sampled 

hyper states using standard point-based POMDP method



Offline - Bayesian Exploration Exploitation 
Tradeoff in LEarning (BEETLE)

- The constructed α-functions can be shown to be multivariate polynomials

- The main computational challenge is that the number of terms in the polynomials increases 

exponentially with the planning horizon 

- The key to applying it in larger domains is to leverage knowledge about the structure of the domain 

to limit the parameter inference to a few key parameters, or by using parameter tying (whereby a 

subset of parameters are constrained to have the same posterior)
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Model-free Bayesian Reinforcement Learning


