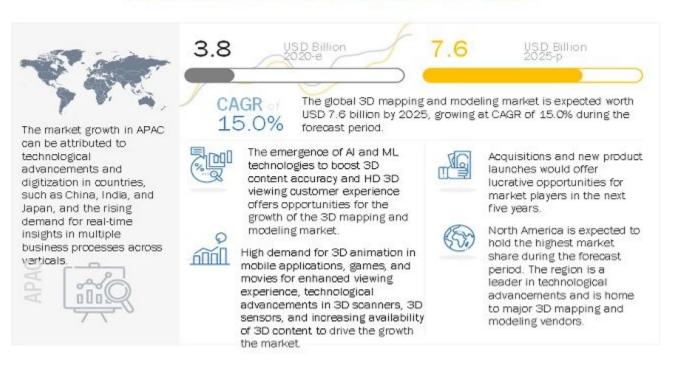
CSC2457 3D & Geometric Deep Learning

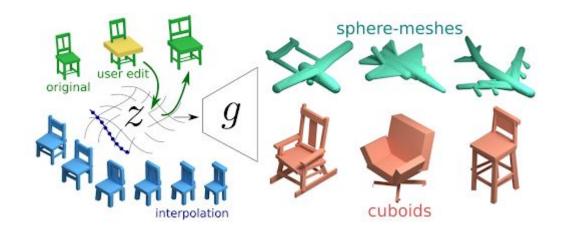
ShapeAssembly: Learning to Generate Programs for 3D Shape Structure Synthesis

R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero, Niloy J. Mitra, Daniel Ritchie

2021-02-09


Presenter: Zhoujie Zhao

Instructor: Animesh Garg


Attractive Opportunities in the 3D Mapping and Modeling Market

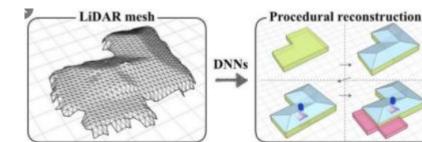
Motivation

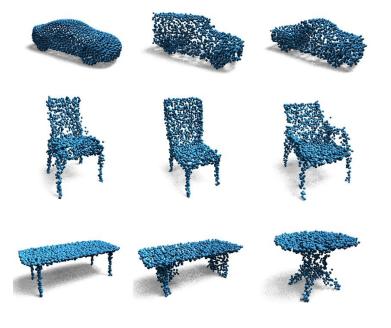
- Increasing demand for (high-quality) 3D objects

- The craft of 3d modeling remains difficult and time consuming

- One promising way: generative models of 3D shapes
- Ideal model: plausible output geometry, a wide range of shape, interpretable representation

- Procedural models: authoring a good procedural model from scratch is difficult


- Procedural Modeling of Buildings (2006)


-Procedural Modeling of a Building from a Single Image (2018,2016)

- Deep generative models: implausible geometry, hard to edit or manipulate

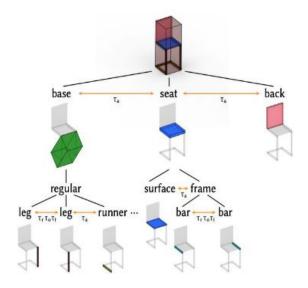
-ComplementMe:Weakly-Supervised Component Suggestions for 3D Modeling (2017)

-StructureNet: Hierarchical Graph Networks for 3D Shape Generation (2019)

Contributions

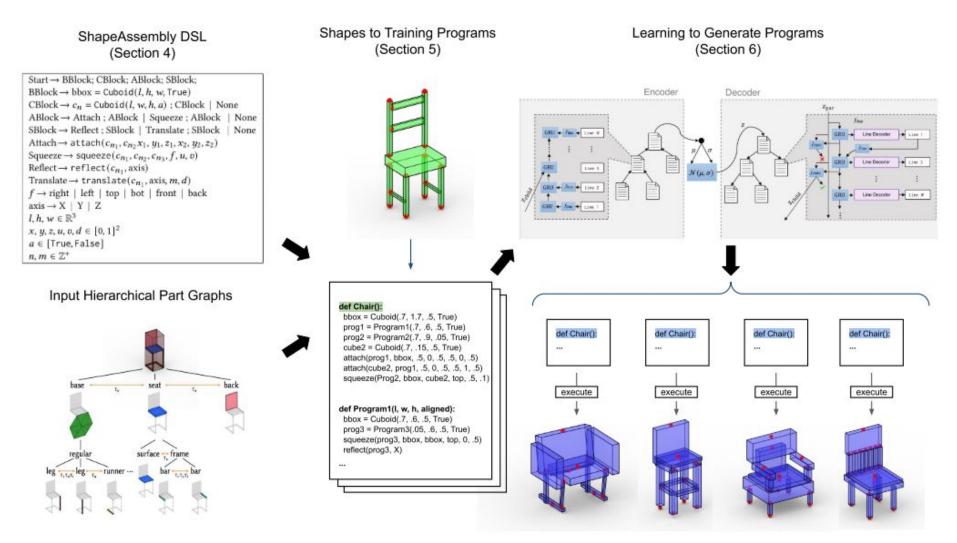
Insight: Procedural models and deep generative models have complementary strengths

In this paper, the authors proposed:

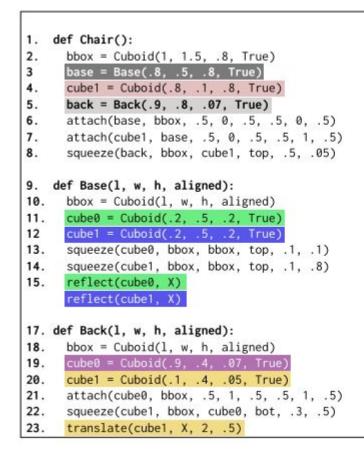

- An Assembly language for shapes, allowing the procedural specification of shape structures represented as connected part assemblies.
- A deep generative model for ShapeAssembly programs, coupling the ease-of-training and variability of generative networks with the precision and editability of procedural representations.

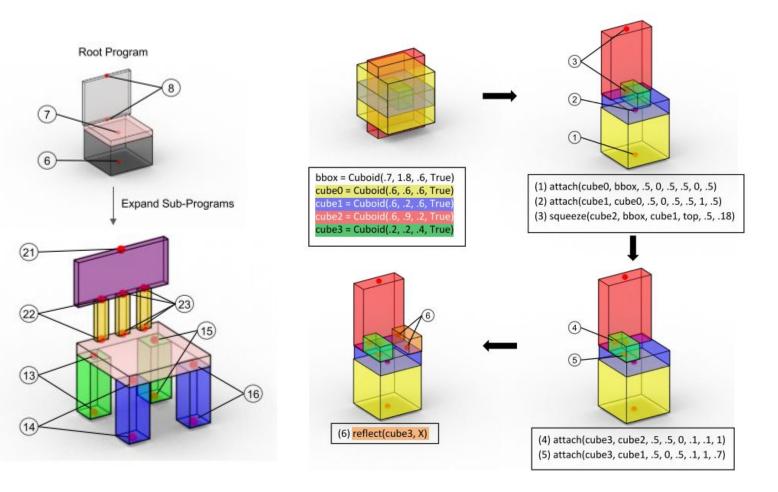
Problem Setting

Input: dataset of hierarchical 3D graphs

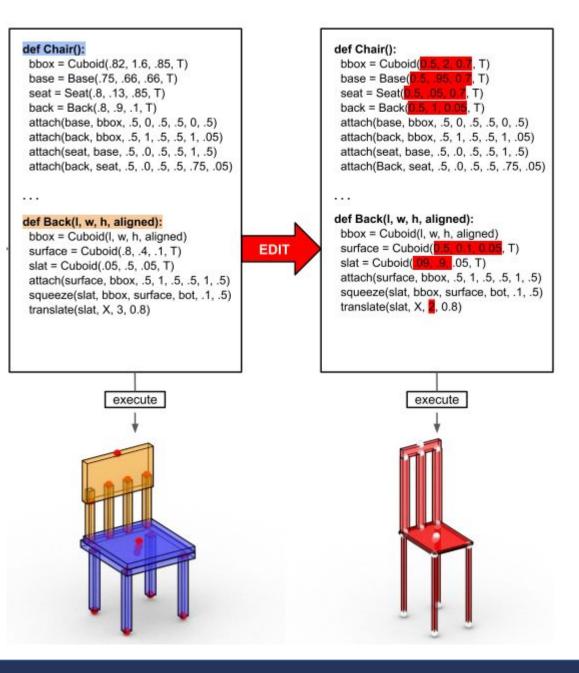

Output: novel 3D shapes

- Uses hierarchical sequence VAE to generate a DSL program
- Uses that program to generate the ultimate 3D shape output





Approach



ShapeAssembly

ShapeAssembly

ShapeAssembly

- BBlock
- CBlock
- ABlock
- SBlock

Start \rightarrow BBlock; CBlock; ABlock; SBlock; BBlock \rightarrow bbox = Cuboid(l, h, w, True) CBlock $\rightarrow c_n$ = Cuboid(l, w, h, a); CBlock | None ABlock \rightarrow Attach; ABlock | Squeeze; ABlock | None SBlock \rightarrow Reflect; SBlock | Translate; SBlock | None Attach \rightarrow attach($c_{n_1}, c_{n_2}, x_1, y_1, z_1, x_2, y_2, z_2$) Squeeze \rightarrow squeeze($c_{n_1}, c_{n_2}, c_{n_3}, f, u, v$) Reflect \rightarrow reflect(c_n , axis) Translate \rightarrow translate(c_n , axis, m, d) $f \rightarrow$ right | left | top | bot | front | back axis \rightarrow X | Y | Z l, h, $w \in \mathbb{R}^+$ x, y, z, u, v, $d \in [0, 1]^2$ $a \in [True, False]$ n, $m \in \mathbb{Z}^+$

Program Extraction Procedure

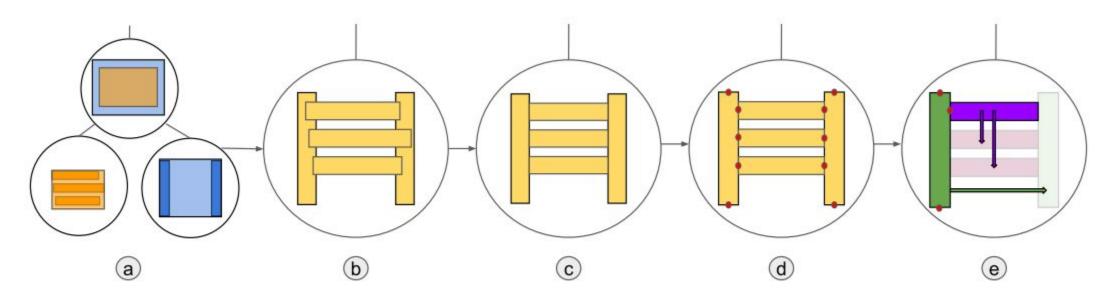
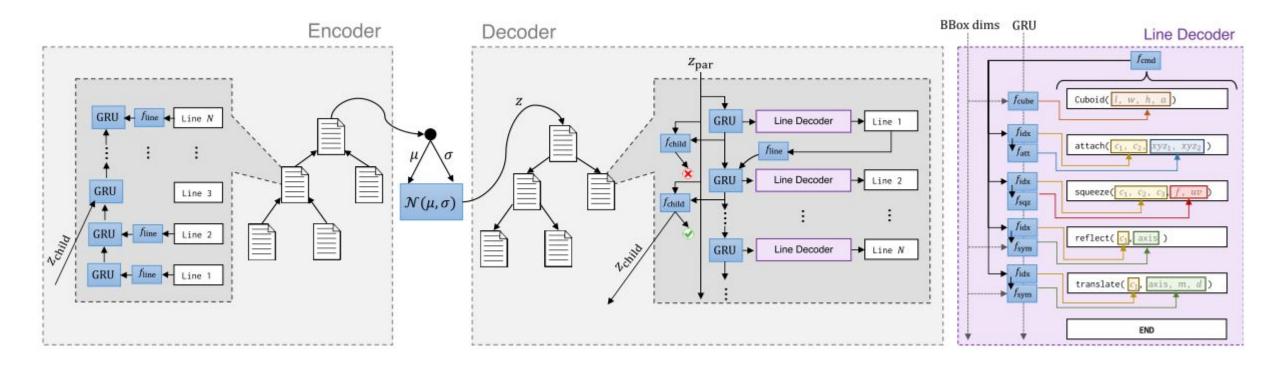
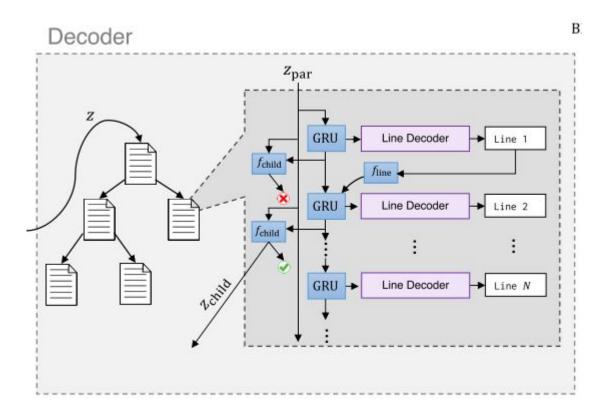
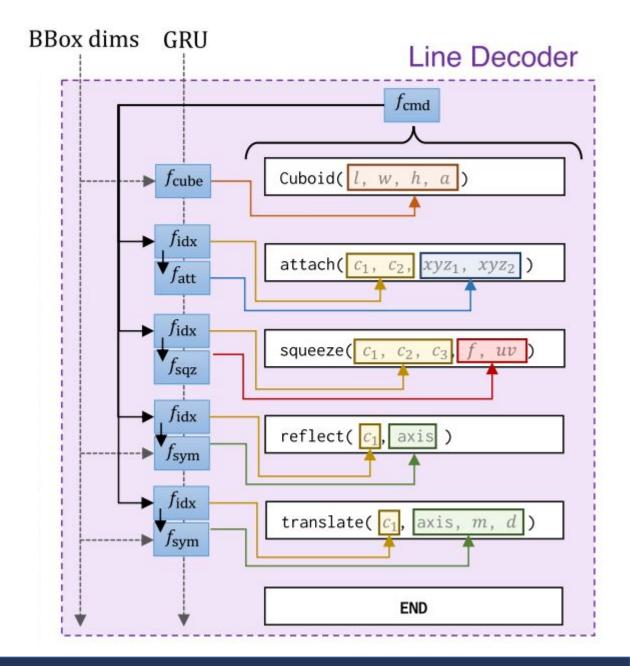
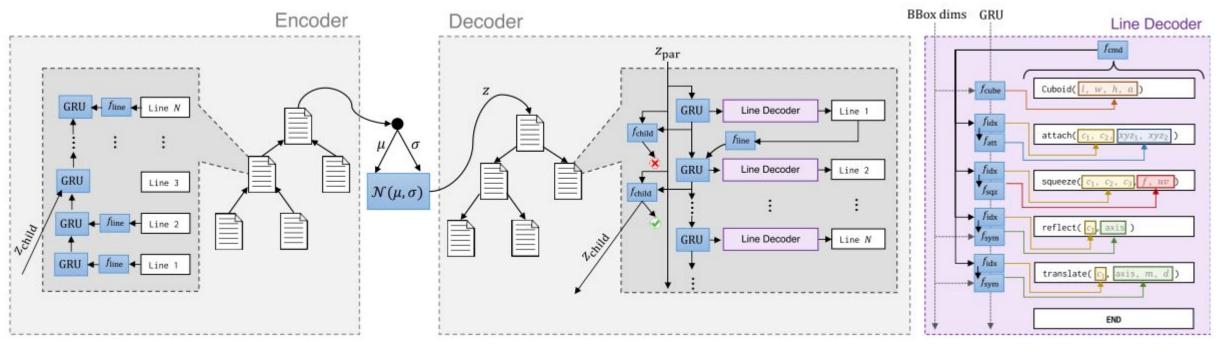




Fig. 5. The steps of our program extraction pipeline. (a) Fragment of an input hierarchical part graph showing chair back (parent node), chair back frame (blue child), and chair back surface (orange child). (b) Locally flattening the hierarchy so that physically interacting leaf parts become siblings. (c) Shortening leaf parts that intersect other leaf parts. (d) Locating attachment points between parts. (e) Forming leaf parts into symmetry groups.

Gated Recurrent Unit (GRU)


$f_{ m child}$

 $z_{
m child}$


• *f*_{cmd}: (7)

• f_{att} : (3 × 2)

- *f*_{cube}: (4)
- *f*_{sqz}: (8)
- f_{idx} : (11 × 3)
- *f*_{sym}: (5)

Gated Recurrent Unit (GRU)

- *f*_{cmd}: (7)
- *f*_{cube}: (4)
- f_{idx} : (11 × 3)

- f_{att} : (3 × 2)
- *f*_{sqz}: (8)
- *f*_{sym}: (5)

 $f_{\rm child}$ $z_{\rm child}$

Novel Shape Synthesis

PartNet dataset

StructureNet3D-PRNN

Analysis of Shape Quality

- Rootedness ↑ (% rooted)
- Stability ↑ (% stable)
- Realism ↑ (% fool)
- Frechet Distance \Downarrow (FD)
- Flat
- No Order
- No Align
- No Macros
- No Reject

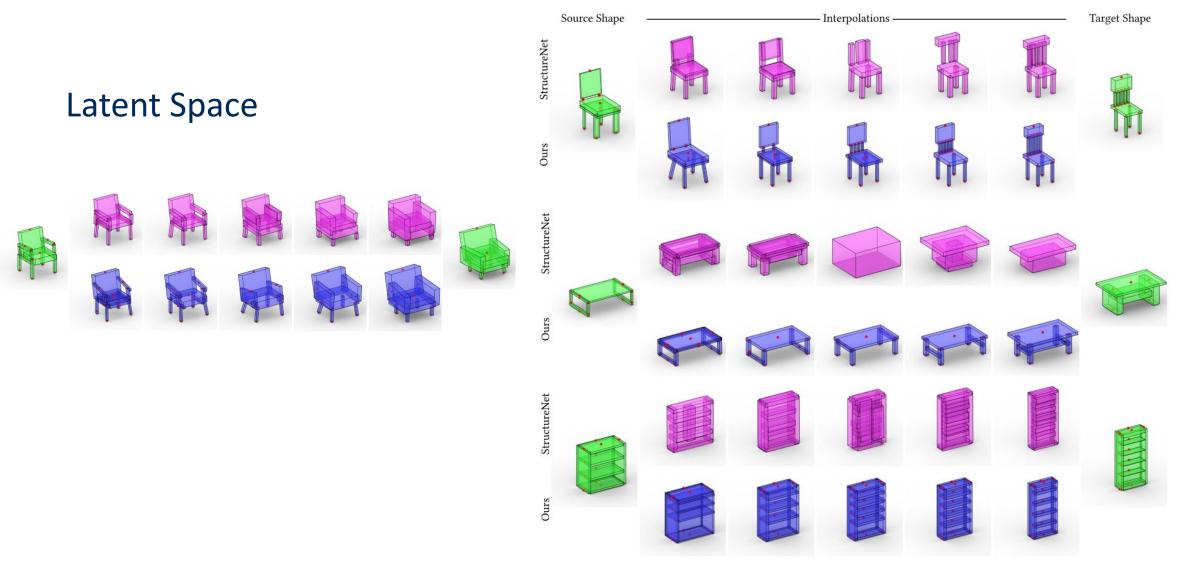
Category	Method	% rooted ↑	% stable ↑	% fool ↑	$\mathbf{FD}\Downarrow$
	3D-PRNN	73.1	50.9	12.60	39.30
	StructureNet	89.7	74.9	4.04	64.79
	Ours (Flat)	95.0	60.0	11.58	77.45
	Ours (No Order)	82.4	58.4	12.36	64.17
Chair	Ours (No Align)	94.6	84.6	28.68	29.32
	Ours (No Macros)	92.0	77.9	19.56	36.78
	Ours (No Reject)	92.9	79.7	23.36	20.63
	Ours	94.5	84.7	25.06	22.34
	Ground Truth	100	88.0		_
	3D-PRNN	71.2	29.4	2.12	140.07
	StructureNet	94.4	76.8	3.94	173.35
	Ours (Flat)	87.0	66.0	29.84	148.63
	Ours (No Order)	84.5	56.0	27.38	114.10
Table	Ours (No Align)	92.2	61.5	23.64	46.64
	Ours (No Macros)	95.9	85.0	33.16	53.21
	Ours (No Reject)	94.1	76.4	29.20	52.78
	Ours	96.2	85.9	33.21	49.07
	Ground Truth	100	93.1	<u></u> 22	-
Storage	3D-PRNN	44.8	20.8	4.62	94.08
	StructureNet	96.2	75.0	5.04	92.85
	Ours (Flat)	95.9	74.0	7.44	81.17
	Ours (No Order)	87.9	63.4	8.70	107.42
	Ours (No Align)	89.7	49.3	11.04	30.15
	Ours (No Macros)	87.5	69.9	5.92	72.80
	Ours (No Reject)	94.3	80.9	11.66	31.69
	Ours	95.3	83.7	13.50	31.72
	Ground Truth	100	87		_

Program editability

Category	Method	——— Macros Per Line ———					
		Lines ↓	Refl ↑	Trans 🕆	Squeeze 🏦	Total ↑	
Chair	3D-PRNN	15.7	0.1100	0.0020	0.0240	0.1430	
	StructureNet	27.1	0.0600	0.0004	0.0700	0.1330	
	Ours	20.4	0.0880	0.0054	0.0920	0.1860	
	Ground Truth	24.4	0.0800	0.0090	0.1130	0.2070	
Table	3D-PRNN	13.1	0.1300	0.0010	0.0680	0.1990	
	StructureNet	24.8	0.0270	0.0006	0.0620	0.0900	
	Ours	19.0	0.0990	0.0002	0.1440	0.2440	
	Ground Truth	20.0	0.0950	0.0050	0.1450	0.2460	
Storage	3D-PRNN	22.6	0.0170	0.0060	0.0530	0.0770	
	StructureNet	30.7	0.0390	0.0040	0.0770	0.1200	
	Ours	19.8	0.0820	0.0080	0.1440	0.2340	
	Ground Truth	24.7	0.0650	0.0147	0.1510	0.2320	

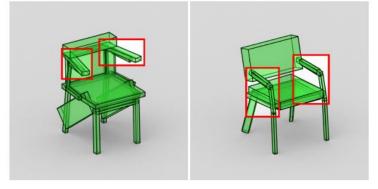
More macros can make the program be more concise,

Geometric variability

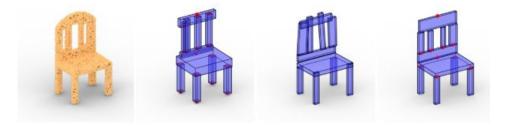

		Generalization NND to Train ↑ N	Coverage IND from Val ∥	Variety NND to Self 1	
Category	Method	CD	CD	CD	
Chair	3D-PRNN	0.111	0.123	0.104	
	StructureNet	0.104	0.119	0.087	
	Ours	0.108	0.118	0.104	
	Validation	0.105))	0.114	
Table	3D-PRNN	0.095	0.130	0.086	
	StructureNet	0.129	0.141	0.0925	
	Ours	0.101	0.108	0.102	
	Validation	0.09	—	0.099	
Storage	3D-PRNN	0.134	0.132	0.119	
	StructureNet	0.129	0.135	0.107	
	Ours	0.125	0.129	0.119	
	Validation	0.11		0.125	

Best on the coverage and variety metrics.

easier to edit.


StructureNet

Ours



Limitations

- Assumption of program extraction procedure

- Discard training programs with more than 12 total Cuboid declarations (a trade-off between variability and quality)
- Not guarantee the leaf-to-leaf connectivity
- Only supports cuboids

Contributions (Recap)

Insight: Procedural models and deep generative models have complementary strengths

In this paper, the authors proposed:

- An Assembly language for shapes, allowing the procedural specification of shape structures represented as connected part assemblies.
- A deep generative model for ShapeAssembly programs, coupling the ease-of-training and variability of generative networks with the precision and editability of procedural representations.