PolyGen: An Autoregressive Generative Model of 3D Meshes

CSC2457 3D & Geometric Deep Learning

February 9th, 2021 Presenter: Alex(ander) Tessier Instructor: Animesh Garg

Motivation and Main Problem

Generate Meshes with polygonal faces!

- Have an Image?
- Have a class?
- A Context?
- Some vertices?
- You can generate a mesh!
- Think of the holodeck in Star Trek...

Motivation and Main Problem

- Why generative?
 - Synthesis 'novelty'
 - Repair
 - Vision & Reasoning
 - Environments for RL and other training
 - 3D Modeling
 - 3D Printing sample the real world

Why are generative meshes hard?

- Unordered elements
- Discrete face structure
 - N-gon means vary sequence size
- Triangle soup
- Human meshes (games, graphics)
 - Compact
 - Good use of geometric primitives

Previous Work

- "...there were no existing methods that directly model mesh vertices and faces"
- Compression yes Draco (google)
- · Ordered and unordered point clouds
 - The shape variational autoencoder: A deep generative model of part-segmented 3d objects Nash & Williams 2017
 - Point cloud GAN Li et. al 2019
 - Pointflow: 3d point cloud generation with continuous normalizing flows. Yang et. al 2019
 - PCT: Point Cloud Transformer. Guo 2020
- Voxels
 - A unified approach for single and multi- view 3d object reconstruction. Choy et.al 2016
 - Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. Wu et. al 2016
 - Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs. Tarchenko et. al 2017
 - Unsupervised learning of 3d structure from images. 2016
- Functional representations: SDF, Implicits in general
 - Learning continuous signed distance functions for shape representation. Parks et.al 2019
 - Occupancy networks: Learning 3d reconstruction in function space. Mescheder et. al. 2019
- Parameterized deformable meshes
 - A papier-ma^che' approach to learning 3d sur- face generation Groueix et.al. 2018

Differences in approach

- Here, we directly model and generate meshes that are similar to those created by *people*
- Probabilistic model yields diverse (creative?) output robust to ambiguous input – principled
- Vertex model like PointGrow (Sun et al, 2020)
 - autoregressive decomposition to model point 3D clouds
 - Fixed length point clouds vs variable vertex sequences
 - Hand-crafted self-attention mechanism vs SOA deep architectures -> to model verts and faces – generation of high quality meshes

Contributions

- First: Unconditional mesh vertex & face models create n-gon meshes

 directly, no post-processing! Autoregressive!
- Demonstrated conditional generation given any and/or only one of:
 - Object Class
 - Image
 - Voxels
- Application of Transformers to Meshes: vertex & face distributions, robust to bad input
- Output is diverse, realistic and directly usable in graphics applications

 unlike previous post-processed output
 Image: Second Se

General Background

PolyGen: An Autoregressive Generative Model of 3D Meshes

Charlie Nash¹ Yaroslav Ganin¹ S. M. Ali Eslami¹ Peter W. Battaglia¹

Generating Long Sequences with Sparse Transformer

Rewon Child¹ Scott Gray¹ Alec Radford¹ Ilya Sutskever¹

Pointer Networks

Oriol Vinyals* Google Brain Meire Fortunato* Department of Mathematics, UC Berkeley Navdeep Jaitly Google Brain

illia.polosukhin@gmail.com

General Background – **Transformers &** Attention

Why Transformers for Meshes?

- Short & Long range dependencies (context)
- Relationships between faces and vertices
 - Symmetries
 - Non-local dependencies
 - Arbitrary distributions
- Distribution over sequences
- Analogous to words / sentences / paragraphs
 - Autoregressive language models

Problem Setting

A mesh, ${\cal M}$ has 3d vertices ${\cal V}$, which are indexed to form faces, ${\cal F}$

$$p(\mathcal{M}) = p(\mathcal{V}, \mathcal{F}) = p(\mathcal{F}|\mathcal{V})p(\mathcal{V})$$
 $\mathcal{F}_{\text{tri}} = \left\{ \left(f_1^{(i)}, f_2^{(i)}, f_3^{(i)}
ight)
ight\}_i$
 $\mathcal{F}_{n-\text{gon}} = \left\{ \left(f_1^{(i)}, f_2^{(i)}, \dots, f_{N_i}^{(i)}
ight)
ight\}_i$

Problem Setting

A mesh, ${\cal M}$ has 3d vertices ${\cal V}$, which are indexed to form faces, ${\cal F}$

$$\mathcal{V}^{\text{seq}} = v_n, n = 1, \dots, N_V \qquad p(\mathcal{V}^{\text{seq}}; \theta) = \prod_{n=1}^{N_V} p(v_n | v_{< n}; \theta) \qquad \max(\log p(|\mathcal{V}^{\text{seq}}|||\theta|))$$

8 bit-quantization (0-255)

$$p(\mathcal{F}^{ ext{seq}}|\mathcal{V}; heta) = \prod_{n=1}^{N_F} p(f_n|f_{< n},\mathcal{V}; heta)$$

Approach

autoregressive

<section-header><section-header><image>

Discussion of results

Figure 1. Class conditional n-gon meshes generated by PolyGen.

Discussion of results PolyGen An Autoregressive Generative Model of 3D Meshes (*) **Class conditional samples**

Figure 6. Image conditional samples (yellow) generated using nucleus sampling with top-p=0.9 and ground truth meshes (blue).

Figure 10. Voxel conditional (blue, left) samples generated using nucleus sampling with top-p=0.9 (yellow) and ground truth meshes (blue, right).

Experimental Results

Negative log-likelihood

• Mesh Generation

- Best model achieves:
 - log-likelihood 4.26 bits/vertex
 - 85% prediction for Vertices
 - 90% prediction for faces
- Accuracy of next vert coordinate & choice of vertex for next face
- No great metrics so...

Model	Bits per vertex		Accuracy	
	Vertices	Faces	Vertices	Faces
Uniform	24.08	39.73	0.004	0.002
Valid predictions	21.41	25.79	0.009	0.038
Draco* (Google)	Total: 2	27.68	-	-
PolyGen	2.46	1.79	0.851	0.900
- valid predictions	2.47	1.82	0.851	0.900
- discr. embed. (V)	2.56	-	0.844	-
- data augmentation	3.39	2.52	0.803	0.868
+ cross attention (F)	-	1.87		0.899

Experimental Results vs. Mesh Reconstruction

Experimental Results

- But are the meshes any good?
- Some crude statistics...
- Blue line is ground truth from ShapeNet

Critique / Limitations / Open Issues

- Transformers are expensive to train
 - Attention is quadratic in nature O(L²)
 - New mechanism is O(L log(L)) ! < Reformer: The efficient Transformer>
 - Can limit mesh sizes (Scalability <vertex history>)
 - Don't know what the limits are... not in paper, or code...
 - Quantization hides some of this
 - Need better quality metrics for understanding statistical variations
- Rotations
- Unclear on performance with generalized curvature
- No new benchmark metrics (yet)...
- Generation could be slow since it's sequential
- Non-planar n-gons (probably filtered out organic/curvy things!)
- Low res 256x256x256 mesh/voxel coords.

Contributions recap

- First: Unconditional mesh vertex & face models create polygon meshes!
- Demonstrated conditional generation given
 - Object Class
 - Image
 - Voxels
- Novel application of Transformers to Meshes
 - vertex & face distributions, robust to bad input
- Output is diverse, realistic and directly usable in graphics applications unlike previous post-processed output

Thank You!