# CSC2457 3D & Geometric Deep Learning

# Deformable Neural Radiance Fields

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman, Steven M. Seitz, Ricardo Martin-Brualla

Date: March 2, 2021

Presenter: Yun-Chun Chen

**Instructor: Animesh Garg** 



#### Motivation and Main Problem



(a) Capture Process (b) Input (c) Nerfie (d) Nerfie Depth

Photorealistically reconstructing a non-rigidly deforming scene using photos/videos captured casually from mobile photos

### Motivation and Main Problem

Applications:

- Increased accessibility and applications of 3D modeling technology

Challenges:

- Nonrigidity: our inability to stay perfectly still
- Challenging materials like hair, glasses, and earrings

#### Prior Work: Non-rigid Reconstruction

#### **Neural Volumes**

#### OccFlow



#### Limitations of Prior Work

- Cannot handle non-rigidly deforming scenes



### Contributions

- A method for generating photorealistic novel views of humans
- A canonical NeRF model as a template for all observations
- A deformation field for 3D point warping
- High-fidelity reconstructions

#### General Background

NeRF:  $F: (\mathbf{x}, \mathbf{d}) \rightarrow (\mathbf{c}, \sigma)$ 

NeRF-A:  $F: (\mathbf{x}, \mathbf{d}, \psi_i) \rightarrow (\mathbf{c}, \sigma)$ 

Notations:

- **x**: 3D position
- d: viewing angle
- **c**: color
- $\sigma$ : density
- $\psi_i$ : appearance code for each observed frame *i*

#### Motivation and Observation



### **Different Observation Frames**



### Canonical Frame



# **Problem Setting**

NeRF:  $F: (\mathbf{x}, \mathbf{d}) \rightarrow (\mathbf{c}, \sigma)$ 

NeRF-A: 
$$F: (\mathbf{x}, \mathbf{d}, \psi_i) \rightarrow (\mathbf{c}, \sigma)$$

#### Notations:

- x: 3D position
- d: viewing angle
- **c**: color
- $\sigma$ : density
- $\psi_i$ : appearance code for each observed frame i

# **Problem Setting**

NeRF:  $F: (\mathbf{x}, \mathbf{d}) \to (\mathbf{c}, \sigma)$ 

NeRF-A: 
$$F: (\mathbf{x}, \mathbf{d}, \psi_i) \rightarrow (\mathbf{c}, \sigma)$$
  
D-NeRF:  $F: (T(\mathbf{x}, \omega_i), \mathbf{d}, \psi_i)$ 

Notations:

- x: 3D position
- d: viewing angle
- **c**: color
- $\sigma$ : density
- $\psi_i$ : appearance code for each observed frame i
- T: observation-to-canonical mapping
- $\omega_i$ : per-frame learned latent code





- Deformation field: SE(3)
- SE(3) transform: rotation **q** with pivot point **s** followed by a translation **t**

$$\mathbf{q} = \exp\left(\mathbf{p}\right) = \begin{pmatrix} \cos \|\mathbf{v}\| \\ \frac{\mathbf{v}}{\|\mathbf{v}\|} \sin \|\mathbf{v}\| \end{pmatrix}$$

$$\mathbf{x}' = \mathbf{q}(\mathbf{x} - \mathbf{s})\mathbf{q^{-1}} + \mathbf{s} + \mathbf{t}$$

- MLP: 
$$(\mathbf{x}, \boldsymbol{\omega}_i) \ 
ightarrow (\mathbf{v}, \mathbf{s}, \mathbf{t})$$





### Elastic Regularization

- The deformation field adds ambiguities
- Solution: use elastic energies
- Goal: achieve local rigidity

#### Elastic Regularization

- Compute the Jacobian for each point  $\mathbf{J}_T(\mathbf{x})$
- Apply SVD:  $\mathbf{J}_T(\mathbf{x}) = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$
- Measure the deviation of the singular values of  $\mathbf{J}_T$  from the identity

$$L_{\text{elastic}}(\mathbf{x}) = \left\|\log \mathbf{\Sigma} - \log \mathbf{I}\right\|_{F}^{2} = \left\|\log \mathbf{\Sigma}\right\|_{F}^{2}$$

### Elastic Regularization

- Compute the Jacobian for each point  $\mathbf{J}_T(\mathbf{x})$
- Apply SVD:  $\mathbf{J}_T(\mathbf{x}) = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$



- Measure the deviation of the singular values of  $\mathbf{J}_T$  from the identity

$$L_{\text{elastic}}(\mathbf{x}) = \left\|\log \mathbf{\Sigma} - \log \mathbf{I}\right\|_{F}^{2} = \left\|\log \mathbf{\Sigma}\right\|_{F}^{2}$$

- Robustness: remap the elastic energy defined above with a robust loss

$$egin{split} & L_{ ext{elastic-r}}(\mathbf{x}) = 
ho \left( \|\log \mathbf{\Sigma}\|_F\,,c 
ight), \ & 
ho(x,c) = rac{2(x/c)^2}{(x/c)^2+4}\,. \end{split}$$

### Background Regularization

- The deformation field is unconstrained
- Add a regularization term to prevent the background from moving

$$L_{\text{bg}} = \frac{1}{K} \sum_{k=1}^{K} \left\| T(\mathbf{x}_k) - \mathbf{x}_k \right\|_2$$

#### **Coarse-to-Fine Deformation Regularization**

- Positional encoding:  $\mathbb{R}^3 
ightarrow \mathbb{R}^{3+6m}$ 

$$\gamma(\mathbf{x}) = (\mathbf{x}, \cdots, \sin(2^k \pi \mathbf{x}), \cos(2^k \pi \mathbf{x}), \cdots)$$

- Higher m: higher frequency details, but may result in overfitting and modeling image noise
- Smaller m: not able to model deformations which require high frequency details

#### Coarse-to-Fine Deformation Regularization

- Positional encoding:  $\mathbb{R}^3 
ightarrow \mathbb{R}^{3+6m}$ 

$$\gamma(\mathbf{x}) = (\mathbf{x}, \cdots, \sin(2^k \pi \mathbf{x}), \cos(2^k \pi \mathbf{x}), \cdots)$$

- Coarse to fine:

$$\gamma_{\alpha}(\mathbf{x}) = (\mathbf{x}, \cdots, w_k(\alpha)) \sin(2^k \pi \mathbf{x}), w_k(\alpha) \cos(2^k \pi \mathbf{x}), \cdots)$$
$$w_j(\alpha) = \frac{(1 - \cos(\pi \operatorname{clamp}(\alpha - j, 0, 1)))}{2} \qquad \alpha(t) = \frac{mt}{N}$$

#### Nerfies: Casual Free-Viewpoint Selfies

- Application: reconstruct high quality models of humans from casually captured selfies
- Input: a sequence of selfie photos or a selfie video (user is standing mostly still)



### Nerfies: Casual Free-Viewpoint Selfies

- Frame selection: filter blurry frames using the variance of the Laplacian
- Camera registration: use SfM to compute camera poses for each image and intrinsic calibration
- Foreground segmentation: use a foreground segmentation network to filter out features on the subject

| Pag | 2040 |  |
|-----|------|--|

|                     | GLASSES (78 images) |          | BEANIE (74 images) |               | CURLS (57 images) |        | KITCHEN (40 images) |          |        | LAMP (55 images) |          |        | MEAN           |          |                    |                |          |        |
|---------------------|---------------------|----------|--------------------|---------------|-------------------|--------|---------------------|----------|--------|------------------|----------|--------|----------------|----------|--------------------|----------------|----------|--------|
|                     | <b>PSNR</b> ↑       | MS-SSIM↑ | LPIPS↓             | <b>PSNR</b> ↑ | MS-SSIM↑          | LPIPS↓ | <b>PSNR</b> ↑       | MS-SSIM↑ | LPIPS↓ | $PSNR\uparrow$   | MS-SSIM↑ | LPIPS↓ | $PSNR\uparrow$ | MS-SSIM↑ | $LPIPS \downarrow$ | $PSNR\uparrow$ | MS-SSIM↑ | LPIPS. |
| NeRF [36]           | 17.69               | .5962    | .4723              | 16.58         | .5524             | .5884  | 14.28               | .4517    | .5921  | 18.79            | .6873    | .4094  | 17.42          | .6447    | .4268              | 16.95          | .5865    | .4978  |
| NeRF + latent       | 21.76               | .8201    | .3239              | 20.89         | .7711             | .4235  | 22.20               | .8040    | .3446  | 21.24            | .8212    | .3075  | 20.63          | .8489    | .2364              | 21.34          | .8131    | .3272  |
| Neural Volumes [29] | 15.62               | .5217    | .5759              | 15.82         | .5807             | .5630  | 15.26               | .5421    | .5506  | 14.84            | .5533    | .5719  | 13.56          | .5194    | .5558              | 15.02          | .5434    | .5635  |
| Ours                | 24.78               | .8783    | .2354              | 23.04         | .8338             | .3444  | 24.08               | .8613    | .2526  | 23.48            | .8759    | .2299  | 22.08          | .8729    | .1807              | 23.49          | .8644    | .2486  |
| No elastic          | 24.61               | .8760    | .2357              | 23.22         | .8356             | .3451  | 23.75               | .8527    | .2547  | 23.28            | .8729    | .2393  | 21.96          | .8726    | .1801              | 23.36          | .8620    | .2510  |
| No coarse-to-fine   | 23.51               | .8434    | .2551              | 21.41         | .7875             | .3684  | 23.08               | .8284    | .2939  | 23.11            | .8667    | .2455  | 22.51          | .8751    | .1876              | 22.72          | .8402    | .2701  |
| No background reg.  | 24.20               | .8656    | .2360              | 19.47         | .6989             | .3904  | 20.73               | .7620    | .2964  | 21.83            | .8395    | .2569  | 19.82          | .8078    | .2061              | 21.21          | .7947    | .2772  |
| Ours (base)         | 23.91               | .8479    | .2711              | 21.83         | .7816             | .4046  | 22.85               | .8224    | .3069  | 22.21            | .8209    | .3049  | 21.92          | .8571    | .2202              | 22.54          | .8260    | .3015  |





Input Video

Novel View Color

Novel View Depth





input images

ground truth

rendered color

rendered depth

### Discussion of results

- Renders novel views of humans with photorealistic quality
- Details (e.g., hair) are recovered
- Outperforms NeRF and NV
- Does not rely on domain specific priors (e.g., the dog example)

# Critique / Limitations / Open Issues

- Can the method handle larger deformations that include full body motions?

- What would happen if the captured data is under lighting variations?

- What if background is also moving?

- How much data is needed (density of capture)?

# Contributions (Recap)

- A method for generating photorealistic novel views of humans
- A canonical NeRF model as a template for all observations
- A deformation field for 3D point warping
- High-fidelity reconstructions