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Main Problem

• Multiview 3D surface reconstruction from 2D images

Input Output
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Motivation

Applications:

1.     https://doi.org/10.1016/j.cageo.2011.09.012

2. https://www.spotnik.net/blogs/4/Mobile%20Automata%20Robot%20With%20Agents%20Network

3. https://doi.org/10.1016/j.media.2008.12.003

4. https://www.wired.com/2015/02/3d-printed-selfies/

Entertainment4Medical Applications3Robotics/Navigation2Geoscience1

3



Challenges

• Ambiguities in feature matching -> hard to get an accurate and dense 
reconstruction
• Missing camera information
• Fine structure capture
• Occlusion handling for multiple objects
• Memory/computation limitations
• Post processing steps for surface reconstruction

http://www.cs.cmu.edu/~ehsiao/thesis/ehsiao_thesis.pdf
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Prior Work (Known Camera)

• Recover depth information with Multi-View Stereo (MVS) via feature 
matching
- often require post-processing steps for surface reconstruction

• Neural representation:
- (Vincent S., et al., 2019): Encode scene geometry with LSTM to simulate ray 

marching
- Nerf (Ben M. et al., 2020): NN to predict volume density and view dependent 

radiance
- (Michael O. et al., 2020): use NN to learn the surface light fields
- Can’t handle unknown cameras or 3D surface reconstruction
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Prior Work (Unknown Camera)

• Structure From Motion (SfM) :

- estimate camera and 3D representation jointly
- (Chengzhou T. et al, 2019): Use a reference frame to help with depth   

estimation and features from nearby images to help with depth and 
camera parameters 

- only sparse representation (e.g. point cloud)
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Contributions 

• Introduces an end-to-end architecture that handles unknown 
geometry, appearance, and cameras (unknown camera + no post-
processing)
• Produces SOTA watertight 3D surface reconstructions of different 

objects with a wide range of appearances (no feature matching + 
general appearance model)
• Demonstrates the disentangled geometry and appearance 

representation
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General Background 

• Implicit Differentiable Renderer (IDR):
§ Color of pixel: differentiable function in the three unknowns of a 

scene: geometry, appearance, and the cameras. 
§ Appearance: all the factors that define the surface light field, 

excluding the geometry, i.e., the surface bidirectional reflectance 
distribution function (BRDF) and the scene’s lighting conditions. 

§ Capability: all surface light fields that can be represented as 
continuous functions of the point on the surface, its normal, and the 
viewing direction. 
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DeepSDF(Recap)

• Signed Distance Function (SDF): 

Implicit shape representation

Represents distance to surface (SDF = 0)

• DeepSDF:

MLP to approximate SDF in continuous space

Input: 3D coordinates + shape code; output: SDF value 
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Deep SDF: Learning Continuous Signed Distance Functions for Shape Representation 



Ray Casting (Overview)

• An algorithm for realistic rendering
• For every pixel:
a) Construct a ray from the viewer/camera center
b) Find the intersection with the scene

c) Find the color*

* Color depends on many factors such as:
Light properties, material properties, surface properties
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Problem Setting

• Unknowns: geometry (𝜃), appearance( 𝛾), 
cameras(𝜏)

• Setup (fixed pixel p): 
c: unknown center of the respective camera

v: direction of ray
!𝑥: first intersection of the ray and the surface S𝜃
!𝑛: surface normal at !𝑥
𝑧̂: global geometry feature vector

• Rendered color: 𝐿(𝜃, 𝛾, 𝜏) = 𝑀(*𝑥, *𝑛, 𝑧̂, 𝑣, 𝛾)
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Algorithm (Intersection + Surface Normal)

• Intersection point: 0𝒙 𝜃, 𝜏 = 𝒄 + 𝑡 𝜃, 𝒄, 𝒗 𝒗
• Find 0𝒙 in a gradient descent-like algorithm

• by implicit Differentiation:
0𝒙 𝜃, 𝜏 = 𝒄 + 𝑡'𝒗 −

𝒗
𝛻𝒙𝑓(𝒙𝟎; 𝜃') : 𝒗𝟎

𝑓(𝒄 + 𝑡'𝒗; θ)

• Normal vector:
0𝒏 𝜃, 𝜏 = 𝛻𝒙𝑓(0𝒙 𝜃, 𝜏 , 𝜃)
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Algorithm (Surface Light Field)

• Surface light field radiance: 

𝐿 0𝒙,𝒘* = 𝐿+ 0𝒙,𝒘* + >
,

𝐵 0𝒙, 0𝒏,𝒘- , 𝒘* 𝐿- 0𝒙,𝒘- 0𝒏 : 𝒘- d𝒘-

• 𝐿+ 0𝒙,𝒘* : light sources (emitted radiance of light by the surface)
• 𝐵 0𝒙, 0𝒏,𝒘- , 𝒘* : BRDF (reflectance and color properties of the surface)
• 𝐿- 0𝒙,𝒘𝒊 : incoming radiance 
• 0𝒏 : 𝒘-: weakening factor (non-orthogonal incoming light)
• 𝛺 : half sphere centered at 0𝒏
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BRDF:https://www.cs.cmu.edu/afs/cs/academic/class/1
5462-f09/www/lec/lec8.pdf



Algorithm (Surface Light Field)

• Continuous Function:   𝐿 0𝒙,𝒘* =𝑀' 0𝒙, 0𝒏, 𝒗
• Using MLP (M) to approximate M0 : 𝐿 𝜃, 𝛾, 𝜏 = 𝑀 0𝒙, 0𝒏, 𝒗, 𝛾
• v and n are necessary parameters to be able to learn appearance 

independent from geometry and work with general appearance 
model (e.g. Phong reflection model)
• Global feature vector *𝒛 (input to the renderer):

- encode the geometry relative to the surface sample x
- global lighting effects: secondary lighting + self shadows
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Algorithm (Masked Rendering)

• 2D supervision of geometry: binary mask (foreground/background)

• Test for pixel occupancy (ray intersection):

𝑆(𝜃, 𝜏) = 1 𝑅 𝜏 ∩ 𝑆/ ≠ ∅
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Approximation (differentiable):
𝑆0 𝜃, 𝜏 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(−𝛼min

12'
𝑓(𝒄 + 𝑡𝒗; 𝜃))
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Loss Function

• 𝑙𝑜𝑠𝑠 𝜃, 𝛾, 𝜏 = 𝑙𝑜𝑠𝑠345 𝜃, 𝛾, 𝜏 + 𝜌𝑙𝑜𝑠𝑠6789 𝜃, 𝜏 + 𝑙𝑜𝑠𝑠: 𝜃

• Appearance:     𝑙𝑜𝑠𝑠345 𝜃, 𝛾, 𝜏 = ;
<
∑=∈<!" 𝐼= − 𝐿= 𝜃, 𝛾, 𝜏

• Geometry:        𝑙𝑜𝑠𝑠6789 𝜃, 𝜏 = ;
0 <

∑=∈<#$% 𝐶𝐸(𝑂=, 𝑆=,0 𝜃, 𝜏 )

• Regularizer (Eikonal):    𝑙𝑜𝑠𝑠: 𝜃 = 𝐸@( ∇@𝑓(𝑥; 𝜃) − 1) A
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End-to-end Network
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Evaluation Dataset

• Dataset: DTU MVS dataset
• 15 scans (49 or 64 high resolution images)
• Manually annotation of binary masks
• Contains ground truth 3D geometries and camera poses
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3D Reconstruction Results (Fixed Camera)
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3D Reconstruction Results (Fixed Camera)
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3D Reconstruction Results (Trained Camera)
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Disentangling Geometry and Appearance

Render geometry network (f) and renderer (M) trained on different 
scenes: 
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Ablation Study

a) Remove viewing direction v
b) Remove surface normal !𝑛
c) Remove feature vector 𝑧̂
d) full blown renderer M 
e) No camera optimization
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Discussion of results

• The proposed method can produce SOTA 3D reconstruction for both 
fixed camera and trained camera cases

• It also showcases a way to optimize camera parameters and 3D 
geometry jointly

• It demonstrates that it is possible to disentangle the representation 
for geometry and appearance
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Limitations (Algorithm)

• Needs a reasonable camera initialization (camera optimization) 

• Fails to capture fine structures sometimes:

• Requires a binary mask for background/foreground:
𝑙𝑜𝑠𝑠 𝜃, 𝛾, 𝜏 = 𝑙𝑜𝑠𝑠345 𝜃, 𝛾, 𝜏 + 𝜌𝑙𝑜𝑠𝑠6789 𝜃, 𝜏 + 𝑙𝑜𝑠𝑠: 𝜃

25



Missing Results + Critiques

• Does not include training/inference time comparison
• Does not include the effect of # of input images

- More images -> better results?
- Minimum number of input images required?
• [it] can only represent single scenes with the original lighting1

• It only works with “static scene without moving objects” 2

1.  Learning Implicit Surface Light Fields: 10.1109/3DV50981.2020.00055

2.  D-NeRF: Neural Radiance Fields for Dynamic Scenes : arXiv:2011.13961
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Contributions (Recap)

• Main Problem: Multiview 3D surface reconstruction from 2D images
• Contributions:
a) Introduces an end-to-end architecture that handles unknown geometry, 
appearance, and cameras
b) Produces SOTA watertight 3D surface reconstructions of different objects 
with a wide range of appearances
c) Demonstrates the disentangled geometry and appearance representation
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