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Motivation and Main Problem

Convolutions are great in 2D for pattern recognition!
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Convolutional Kernel

Slide over image

Aggregate neighboring features 
on center cell

https://mlnotebook.github.io/post/CNN1/



Motivation and Main Problem

Convolutions on Meshes:



Motivation and Main Problem

Scale features on neighbor vertices by the same kernel as each other
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Motivation and Main Problem

Convolutions on Meshes are not very expressive 

because they are isotropic



Motivation and Main Problem

If we designed anisotropic graph convolutional kernels, we could learn 
features more efficiently.

2D CNNs almost exclusively use anisotropic kernels.
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Motivation and Main Problem

Anisotropic kernels on meshes are difficult because: 

• Arbitrary number edges incident on each vertex

• Edges are not ordered in any particular set order

• These edges can come from any arbitrary direction
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Contributions 

• Make convolutional kernels more expressive via anisotropy.
• Allows for better learning of geometric features.

• Difficulty in irregular/sparse structure of 3D geometry.

• Prior work on anisotropic convs. only operate on flat/regular domains.

• Can embed anisotropy in a  convolutional kernel by building a local 
reference frame on each vertex.

• Shows that anisotropy can more efficiently achieve SOTA performance 
on Shape Correspondence  than other techniques.



Problem Setting

We are looking for a convolution that looks like this, but that can 
distinguish the two neighborhoods.
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Approach

Set up a gauge at each vertex by picking a reference edge

Each edge’s kernel value now depends 
on angle w.r.t gauge.

Angle measured on projection in 
tangent space



Features Living in Local Frame

Useful to think of m-d features living in a local frame defined by the 
gauge at each vertex.

2D feature vector 3D feature vector



Big Problem

If you change the gauge, you change the output!



Equivariance



Gauge Equivariance 2D Output/1D Input

What is learned shouldn’t be affected with choice of reference edge.

Mesh Angle Output feature 



Gauge Equivariance 2D Output/1D Input

What is learned shouldn’t be affected with choice of reference edge.

Mesh Angle Output feature 



General Gauge Equivariance

When given m-d input, with n-d output, must solve:



General Gauge Equivariance

When given m-d input, with n-d output, must solve:

How do we solve this?!



Group Representations of SO(2)

,             Are representations of the SO(2) group of 
planar rotations

They take as input an angle, output an n-D planar rotation matrix :

e.g.



Group Representations of SO(2)

N x N SO(2) matrices rotate a vector in a plane.

Have a block diagonal structure.

Rotations on 2D plane defined 
by gauge



Group Representations of SO(2)

,             can be built by block-wise concatenation of smaller, 
irreducible representations of SO(2)

Irreducible Representations of SO(2):



Group Representations of SO(2)

Forming a representation from two irreducible representations 



What Do The Guts Look Like?

N x N block diagonal matrix, made 
of your choice of irreps

M x M block diagonal matrix made 
of your choice of irreps
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What Do The Guts Look Like, Toy Problem

4 x 4 block diagonal matrix, made 
of your choice of irreps

5 x 5 block diagonal matrix made 
of your choice of irreps

Assume 5-dimensional input features, and 4-dimensional output features
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What Do The Guts Look Like, Toy Problem

4 x 4 block diagonal matrix, made 
of your choice of irreps
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of your choice of irreps
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What Do The Guts Look Like, Toy Problem



What Do The Guts Look Like, Toy Problem

Solve by looking at each component of c         individually!
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What Do The Guts Look Like, Toy Problem

Solve by looking at each component of c         individually!



Solve in Chunks
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Solve in Chunks

Looking for a 2x1 solution to  



Solve in Chunks

Solution has basis:

With m=1



Solve in Chunks

Solution has form
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Solve in Chunks

Basis formed by the following matrices



Solve in Chunks

Solution has form
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Solve in Chunks

Solution has form



Forward Pass

Aggregate features from each neighbor, weighed by the kernel basis 
function and the learned weight variable.



Extra Rotation?



Extra Rotation?

Features on different vertices live in 
different frames



Extra Rotation?

Features on different vertices live in 
different frames

We need to account for this by 
aligning their frames.



Aligning Frames : Parallel Transport

If mesh is not flat, additionally need to 
align tangent spaces, then translate:

• Get axis of rotation by cross product of normals

• Get angle of rotation by dot product of normals

• Form SO(3) rotation matrix.

• Can project all of the steps above into a single 2D 
gauge transformation.



Experimental Results: Embedded MNIST

Made a rectangle mesh from MNIST images.

Added random noise to planar mesh. Trained different networks on 
different mesh roughness.
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Experimental Results: Shape Correspondance

Given vertex in one human body-mesh, identify corresponding vertex 
in deformed human body mesh (different pose).



Experimental Results: Shape Correspondance



Discussion of results

Shows anisotropic graph convolutions are much more expressive than 
isotropic graph convolutions, on MNIST dataset.

Achieves state of the art performance on shape correspondence with 
less preprocessing required than other methods, on FAUST dataset.



Critique / Limitations / Open Issues 

Still doesn’t distinguish between neighborhoods of different 
curvatures, even if they have the same angular configuration. 

Need more general experiments for more convincing argument.
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Still doesn’t distinguish between neighborhoods of different 
curvatures, even if they have the same angular configuration. 

Need more general experiments for more convincing argument.

What Questions Do You Have?


