# CSC2457 3D & Geometric Deep Learning

#### Dynamic Graph CNN for Learning on Point Clouds

Yue Wang and Yongbin Sun and Ziwei Liu and Sanjay E. Sarma and Michael M. Bronstein and Justin M. Solomon

Date: January 26, 2021 Presenter: Mustafa Haiderbhai

Instructor: Animesh Garg





Point cloud acquisition has become:

- Inexpensive
- Dense
- Accurate

Processing directly on raw point clouds has benefits in **speed** 







#### We want to extract high-level information about the scene BUT 2D != 3D

#### SO

How can we take the successes of CNN on 2D, and apply them to 3D?







#### Previous research does not incorporate local information

# Contributions

- Extract high level information directly from point clouds
- Points must remain "permutation invariant"
- Prior work treats each point independantly, thereby ignoring local geometric information
- An operation can be performed to to transform local points into a graph, and applying convolution to the edges
- This operation can be repeatedly stacked to learn semantic relationships between groups of points
- Achieves state-of-the-art performance, and shows semantic labelling across large distances and sepeations

#### **General Background**



#### **General Background**



2. Aggregate feature information from neighbors

3. Predict graph context and label using aggregated information

### **General Background**



### **Problem Setting**



 $h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j) = \bar{h}_{\Theta}(\mathbf{x}_i, \mathbf{x}_j - \mathbf{x}_i).$ (7)



|                                          | Mean<br>Class Accuracy | Overall<br>Accuracy |
|------------------------------------------|------------------------|---------------------|
| 3DShapeNets [Wu et al. 2015]             | 77.3                   | 84.7                |
| VoxNet [Maturana and Scherer 2015]       | 83.0                   | 85.9                |
| Subvolume [Qi et al. 2016]               | 86.0                   | 89.2                |
| VRN (single view) [Brock et al. 2016]    | 88.98                  | -                   |
| VRN (MULTIPLE VIEWS) [BROCK ET AL. 2016] | 91.33                  | -                   |
| ECC [Simonovsky and Komodakis 2017]      | 83.2                   | 87.4                |
| PointNet [Qi et al. 2017b]               | 86.0                   | 89.2                |
| PointNet++ [Qi et al. 2017c]             | -                      | 90.7                |
| Kd-net [Klokov and Lempitsky 2017]       | -                      | 90.6                |
| PointCNN [Li et al. 2018a]               | 88.1                   | 92.2                |
| PCNN [Atzmon et al. 2018]                | -                      | 92.3                |
| Ours (baseline)                          | 88.9                   | 91.7                |
| Ours                                     | 90.2                   | 92.9                |
| Ours (2048 points)                       | 90.7                   | 93.5                |

Table 2. Classification results on ModelNet40.

#### State of the art performance while maintaining high efficiency

|                                          | Mean<br>Class Accuracy | Overall<br>Accuracy |
|------------------------------------------|------------------------|---------------------|
| 3DShapeNets [Wu et al. 2015]             | 77.3                   | 84.7                |
| VoxNet [Maturana and Scherer 2015]       | 83.0                   | 85.9                |
| Subvolume [Qi et al. 2016]               | 86.0                   | 89.2                |
| VRN (single view) [Brock et al. 2016]    | 88.98                  | -                   |
| VRN (multiple views) [Brock et al. 2016] | 91.33                  | -                   |
| ECC [Simonovsky and Komodakis 2017]      | 83.2                   | 87.4                |
| PointNet [Qi et al. 2017b]               | 86.0                   | 89.2                |
| PointNet++ [Qi et al. 2017c]             | -                      | 90.7                |
| Kd-net [Klokov and Lempitsky 2017]       | -                      | 90.6                |
| PointCNN [Li et al. 2018a]               | 88.1                   | 92.2                |
| PCNN [Atzmon et al. 2018]                | -                      | 92.3                |
| Ours (baseline)                          | 88.9                   | 91.7                |
| Ours                                     | 90.2                   | 92.9                |
| Ours (2048 points)                       | 90.7                   | 93.5                |

Table 2. Classification results on ModelNet40.

|                                       | Model size(MB) | TIME(MS) | ACCURACY(%) |
|---------------------------------------|----------------|----------|-------------|
| POINTNET (BASELINE) [QI ET AL. 2017B] | 9.4            | 6.8      | 87.1        |
| POINTNET [QI ET AL. 2017B]            | 40             | 16.6     | 89.2        |
| POINTNET++ [QI ET AL. 2017C]          | 12             | 163.2    | 90.7        |
| PCNN [Atzmon et al. 2018]             | 94             | 117.0    | 92.3        |
| Ours (Baseline)                       | 11             | 19.7     | 91.7        |
| Ours                                  | 21             | 27.2     | 92.9        |

Table 3. Complexity, forward time, and accuracy of different models

State of the art performance while maintaining high efficiency



|                 | MEAN | AREO | BAG   | САР  | CAR  | CHAIR | EAR<br>PHONE | GUITAR | KNIFE | LAMP | LAPTOP | MOTOR | MUG  | PISTOL | ROCKET | SKATE<br>BOARD | TABLE |
|-----------------|------|------|-------|------|------|-------|--------------|--------|-------|------|--------|-------|------|--------|--------|----------------|-------|
| # SHAPES        |      | 2690 | 76    | 55   | 898  | 3758  | 69           | 787    | 392   | 1547 | 451    | 202   | 184  | 283    | 66     | 152            | 5271  |
| PointNet        | 83.7 | 83.4 | 78.7  | 82.5 | 74.9 | 89.6  | 73.0         | 91.5   | 85.9  | 80.8 | 95.3   | 65.2  | 93.0 | 81.2   | 57.9   | 72.8           | 80.6  |
| POINTNET++      | 85.1 | 82.4 | 79.0  | 87.7 | 77.3 | 90.8  | 71.8         | 91.0   | 85.9  | 83.7 | 95.3   | 71.6  | 94.1 | 81.3   | 58.7   | 76.4           | 82.6  |
| KD-NET          | 82.3 | 80.1 | 74.6  | 74.3 | 70.3 | 88.6  | 73.5         | 90.2   | 87.2  | 81.0 | 94.9   | 57.4  | 86.7 | 78.1   | 51.8   | 69.9           | 80.3  |
| LocalFeatureNet | 84.3 | 86.1 | 73.0  | 54.9 | 77.4 | 88.8  | 55.0         | 90.6   | 86.5  | 75.2 | 96.1   | 57.3  | 91.7 | 83.1   | 53.9   | 72.5           | 83.8  |
| PCNN            | 85.1 | 82.4 | 80.1  | 85.5 | 79.5 | 90.8  | 73.2         | 91.3   | 86.0  | 85.0 | 95.7   | 73.2  | 94.8 | 83.3   | 51.0   | 75.0           | 81.8  |
| POINTCNN        | 86.1 | 84.1 | 86.45 | 86.0 | 80.8 | 90.6  | 79.7         | 92.3   | 88.4  | 85.3 | 96.1   | 77.2  | 95.3 | 84.2   | 64.2   | 80.0           | 83.0  |
| Ours            | 85.2 | 84.0 | 83.4  | 86.7 | 77.8 | 90.6  | 74.7         | 91.2   | 87.5  | 82.8 | 95.7   | 66.3  | 94.9 | 81.1   | 63.5   | 74.5           | 82.6  |

Table 6. Part segmentation results on ShapeNet part dataset. Metric is mIoU(%) on points.



Ground truth



Distance in feature space in early, middle, and late stages of the newtork Distance in feature space from source point (red) between separate point clouds



# Discussion of results

- Principle of convolutions can be applied to point clouds
- Able to capture local information
- Interestingly able to capture semantic groupings across large distances
- Also able to transfer same distance in feature space to other point clouds

# Critique / Limitations / Open Issues

- Why not state-of-the-art in part segmentation?

- By focusing on edges, this method ignores the relative positioning of points
  - Features are aggregated in patches, and thus deformation of the patches will not be seen
- Are relationships in high-level feature space robust?

# Contributions (Recap)

- This paper learns high-level information from points clouds
- Point clouds are not the same as images, new techniques need to be applied
- Prior work did not incorporate **local information/geometry**
- By transforming the **point cloud into a graph**, convolutions can be applied
- Dynamically reconstructing graph produces stronger results
- State-of-the art performance on classification, and strong performance in part segmentation