Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision

Michael Niemeyer

Lars Mescheder

Andreas Geiger

Feb 16th, 2021

Michael Oechsle

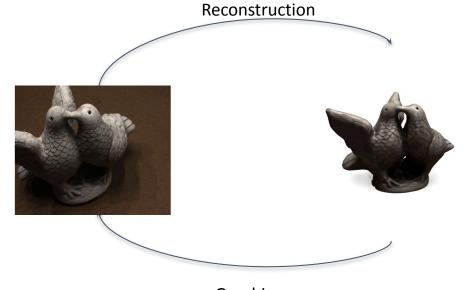
Presenter: Sara Sabour

Instructor: Animesh Garg

Main Problem

3D reconstruction without 3D supervision

- Generate a full 3D model
 - Implicit function
- Train only with single RGB images
 - + Camera intrinsics and extrinsics
 - + Object masks



Graphics

Motivation

Why do we want a 3D model as opposed to just rendering?

Real world is 3D -> interaction requires a model

- Robotic applications
- Autonomous driving

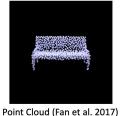
Motivation

- Why do we need a 3D model as opposed to just rendering?

Real world is 3D -> interaction requires a model

- Robotic applications
- Autonomous driving
- Why Implicit representations?
 - Infinite resolution with fixed footprint
 - Perfect surface rendering without template

Voxel (Choy et al. 2016)



Mesh (Groueix et al. 2017

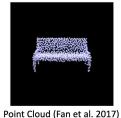
Motivation

- Why do we need a 3D model as opposed to just rendering?

Real world is 3D -> interaction requires a model

- Robotic applications
- Autonomous driving
- Why Implicit representations?
 - Infinite resolution with fixed footprint
 - Perfect surface rendering without template
- Why unsupervised?
 - Real world 3D supervision is not easy to gather

Voxel (Choy et al. 2016)



Mesh (Groueix et al. 2017)

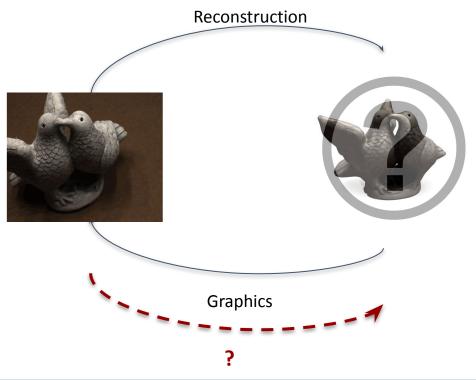
Why is it hard and not already solved?

Unsupervised Implicit Model:

- Requires good regularizers.
- Requires rendering back to image.
- Previous work mainly focused on shape and ignored texture.

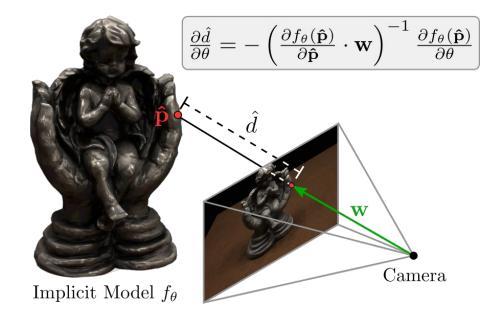
Unsupervised Implicit Model:

 Gradient through an implicit function rendering (ray tracing) was costly, infeasible, inaccurate.



Contributions

- 1. Novelty (method)
 - a. They propose an analytic derivation for the gradient of the implicit function rendering.
 - b. Their model incorporates texture as well as shape.
- 2. Results
 - a. SOTA on unsupervised Shapenet.
 - b. Realistic dataset results.

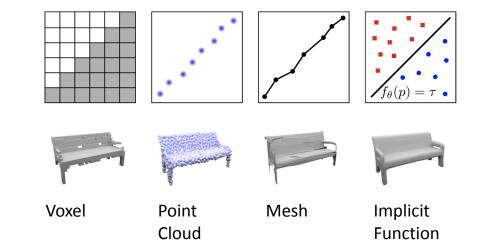


General Background: Implicit Function

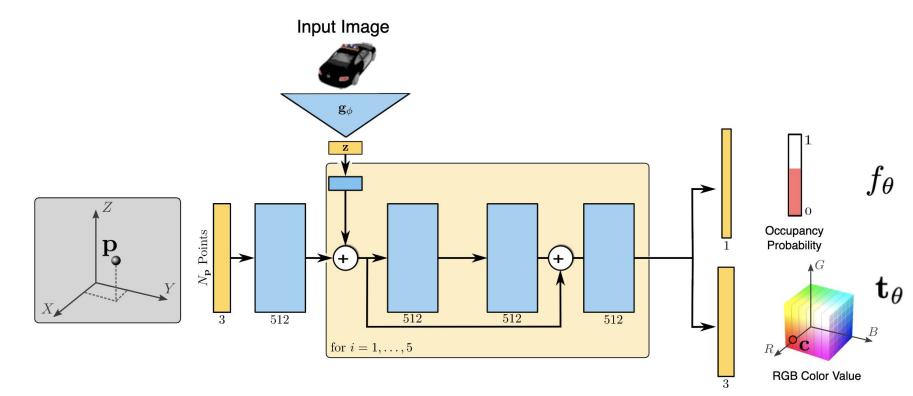
The **Surface** is modeled as the **Root** of a parametric function.

$$f_{\theta} : \mathbb{R}^3 \times \mathcal{Z} \to [0, 1]$$

$$\mathbf{t}_{\theta}: \mathbb{R}^3 \times \mathcal{Z} \to \mathbb{R}^3$$



Implicit Function Architecture



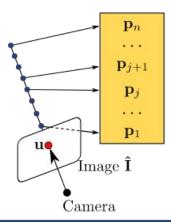
Rendering with an Implicit function

Why f_{θ} is a 3D model?

Given f_{θ} we can render it from any camera viewpoint.

How?

Ray tracing!



Take **n** equidistant candidate points that would be projected to **u** for this camera angle.

$$\mathbf{r}(d) = \mathbf{r}_0 + d\mathbf{w}$$

 $\mathbf{p}_j^{\text{ray}} = \mathbf{r}(j\Delta s + s_0)$

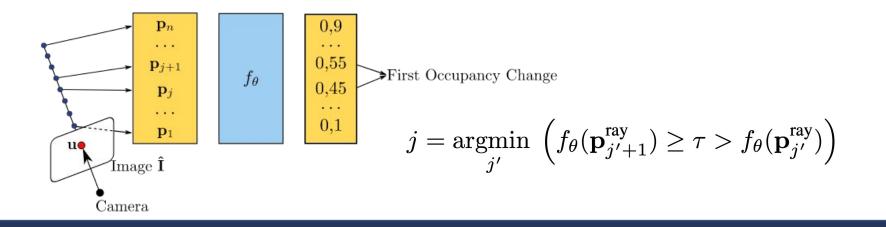
Rendering with an Implicit function

Why f_{θ} is a 3D model?

Given f_{θ} we can render it from any camera viewpoint.

How?

Ray tracing!



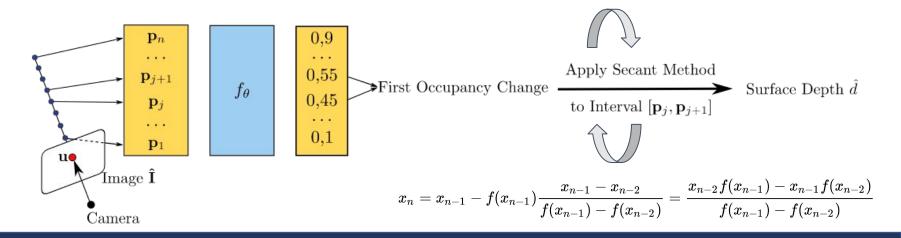
Rendering with an Implicit function

Why $f_{ heta}$ is a 3D model?

Given f_{θ} we can render it from any camera viewpoint.

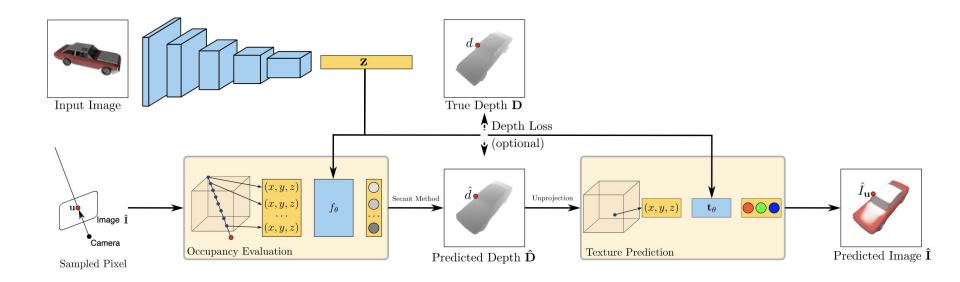
How?

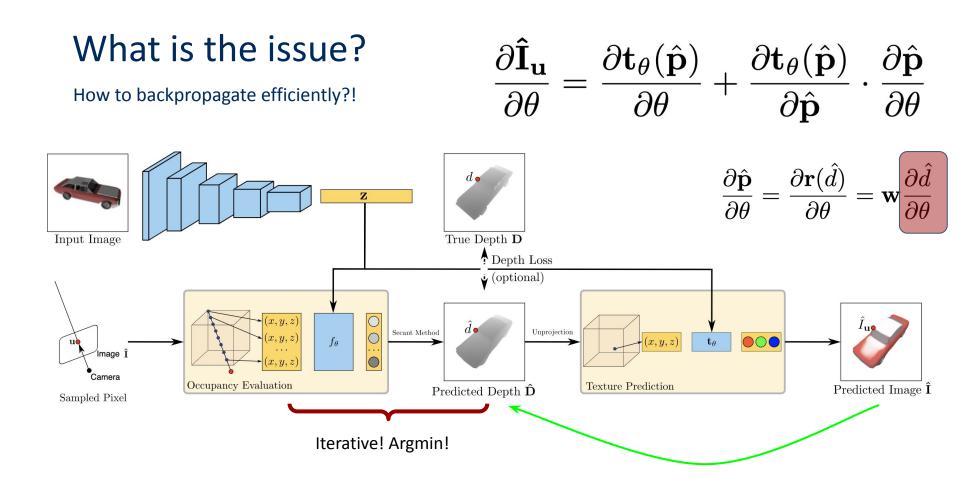
Ray tracing!



Method overview

How to use implicit rendering for image autoencoding?





Main contribution: Analytical Derivation

Observation: Gradients only needs to be calculated at the surface:

$$f_{\theta}(\hat{\mathbf{p}}) = \tau$$

Main contribution: Analytical Derivation

Chain Rule!

Chain Rule!

$$\frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \theta} + \frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \frac{\partial \hat{\mathbf{p}}}{\partial \theta} = 0$$
$$\frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \theta} + \frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \mathbf{w} \frac{\partial \hat{d}}{\partial \theta} = 0$$

 $f_{\theta}(\hat{\mathbf{p}}) = \tau$

Main contribution: Analytical Derivation

Chain Rule!

Chain Rule!

$$J_{\theta}(\mathbf{p}) = \tau$$

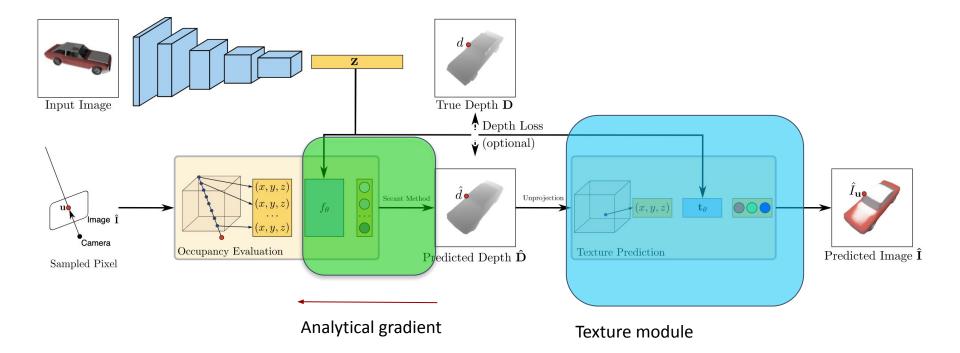
$$\frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \theta} + \frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \frac{\partial \hat{\mathbf{p}}}{\partial \theta} = 0$$

$$\frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \theta} + \frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \mathbf{w} \frac{\partial \hat{d}}{\partial \theta} = 0$$

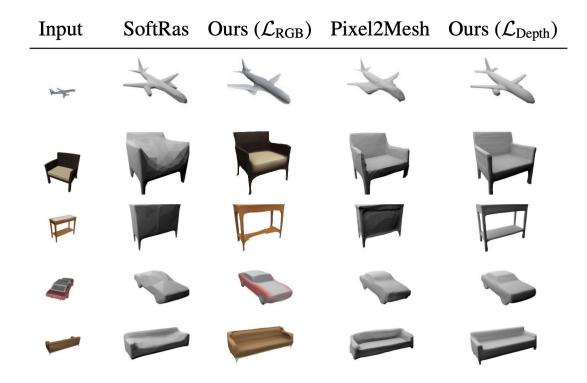
$$\frac{\partial \hat{d}}{\partial \theta} = -\left(\frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \mathbf{w}\right)^{-1} \frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \theta}$$

 $f(\hat{a})$

Main contribution



Experimental Results: qualitative ShapeNet

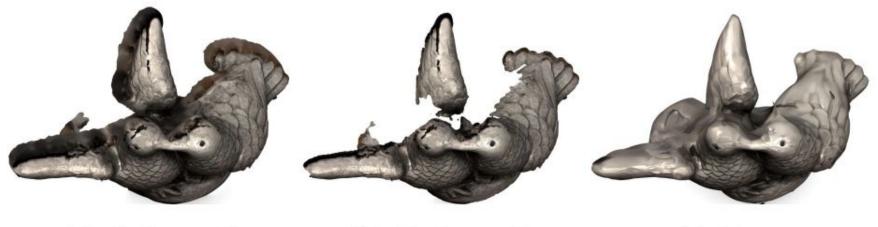


Experimental Results: Chamfer Distance on ShapeNet

	2D Supervision			2.5D Supervision		3D Supervision		
	DRC (Mask) [79]	SoftRas [44]	Ours (\mathcal{L}_{RGB})	DRC (Depth) [79]	Ours (\mathcal{L}_{Depth})	3D R2N2 [13]	ONet [48]	Pixel2Mesh [80]
category								
airplane	0.659	0.149	0.190	0.377	0.143	0.215	0.151	0.183
bench	-	0.241	0.210	-	0.165	0.210	0.171	0.191
cabinet	-	0.231	0.220	-	0.183	0.246	0.189	0.194
car	0.340	0.221	0.196	0.316	0.179	0.250	0.181	0.154
chair	0.660	0.338	0.264	0.510	0.226	0.282	0.224	0.259
display	-	0.284	0.255	-	0.246	0.323	0.275	0.231
lamp	-	0.381	0.413	-	0.362	0.566	0.380	0.309
loudspeaker	-	0.320	0.289	-	0.295	0.333	0.290	0.284
rifle	-	0.155	0.175	-	0.143	0.199	0.160	0.151
sofa	-	0.407	0.224	-	0.221	0.264	0.217	0.211
table	-	0.374	0.280	-	0.180	0.247	0.185	0.215
telephone	-	0.131	0.148	-	0.130	0.221	0.155	0.145
vessel	-	0.233	0.245	-	0.206	0.248	0.220	0.201
mean	0.553	0.266	0.239	0.401	0.206	0.277	0.215	0.210
						Te		

Experimental Results: Qualitative DETU

Compared with Poisson surface reconstruction (sPSR) on mesh based approaches with a trimming of 5 or 7.



(a) Colmap 5

(b) Colmap 7

(c) Ours

Experimental Results: Quantitative DETU

	Trim Param.	Chamfer- L_1
Tola [78] + sPSR	0	1.826
Furu [18] + sPSR	0	1.517
Colmap [67] + sPSR	0	1.303
Camp [9] + sPSR	0	1.441
Tola [78] + sPSR	5	1.399
Furu [18] + sPSR	5	1.311
Colmap [67] + sPSR	5	1.091
Camp [9] + sPSR	5	1.331
Tola [78] + sPSR	7	0.910
Furu [18] + sPSR	7	0.839
Colmap [67] + sPSR	7	0.733
Camp [9] + sPSR	7	1.092
Ours (\mathcal{L}_{RGB})	_	0.907
Ours $(\mathcal{L}_{RGB} + \mathcal{L}_{Depth})$	_	0.782

(a) Our model (\mathcal{L}_{RGB}) with $\lambda_2 = 1$

Effect of adding a surface smoothness loss

(b) Our model (\mathcal{L}_{RGB}) with $\lambda_2 = 0.1$

(c) Our model (\mathcal{L}_{RGB}) with $\lambda_2 = 0$.

(a) Colmap [17] + sPSR

(b) Ours (\mathcal{L}_{RGB})

(c) Ours $(\mathcal{L}_{RGB} + \mathcal{L}_{Depth})$

Effect of number of samples

Discussion of results

- On both of datasets they **outperform previous unsupervised methods**.
 - So implicit functions are superior models to Voxel, point clouds and Mesh based models.

- They do not have any **real world scene examples** from Autonomous Driving or Game Engines that simulate those.
 - So they have not bridged the gap between real world (background, multiple objects) and synthetic data yet.
 - It is only object centric reconstruction.

Critique / Limitations / Open Issues

- Relying on **camera intrinsics and object masks** could be as unrealistic as having 3D model or depth maps.
 - Add canonicalization, unsupervised alignment?
 - Add compositionality?

- They fail on narrow/sharp geometrics.
 - Smarter ray tracing? A prior? Part decomposition?

Contributions (Recap)

- Successful 3D unsupervised reconstruction
- Scalable to real world interactive domains (only object level)
- Better Chamfer Distance and scalability to real world images
- Key insight: integrate texture, use analytical derivatives

