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Motivation and Main Problem

3D Representations prior to DeepSDF

Voxel (Choy et al. 2016) Point Cloud (Fan et al. 2017) Mesh (Groueix et al. 2017)
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3D Representations prior to DeepSDF
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Cubically growing compute and Do not describe surface Limited to the typology of the template
memory requirements



Motivation and Main Problem

fo(x,y,2z) = SDF(x,y,2)
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Contribution

Prior work of 3D representations lacks the ability of
representing fine surface details.

In this paper, the authors proposed

* a new 3D representation that is efficient, expressive and
continuous.

* alearning method for 3D shapes based on a probabilistic
auto-decoder

Further, they demonstrate the application of their
formulation by obtaining SOTA results on shape
reconstruction and completion




Problem Setting

Learning Shape Conditioned Reconstruction with a Continuous Implicit Surface

zZ fo(Z,%) ~ SDF(Z,%)
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Learning

Coding Multiple Shapes with Auto Decoder
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encoder on SDF . .
Directly optimize latent code



Inference

Input
Dadkpropagats Compute SDF on visible parts
l Optimize latent code while fixing decoder
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Surface Extraction

1. Ray casting
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2. Marching Cubes — faster, however imposes quantization error due to fixed grid size




Results and Discussion

e Representing unknown shapes
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(a) Ground-truth  (b) Our Result

(¢) [19]-25 patch

(d) [19]-sphere (e) Our Result

(f) [19]-25 patch

CD, mean chair | plane | table | lamp sofa
AtlasNet-Sph. 0.752 | 0.188 | 0.725 | 2.381 | 0.445
AtlasNet-25 0.368 | 0.216 | 0.328 | 1.182 | 0.411
DeepSDF [ 0.204 | 0.143 | 0.553 | 0.832 0.132]
CD, median

AtlasNet-Sph. 0.511 | 0.079 | 0.389 | 2.180 | 0.330
AtlasNet-25 0.276 | 0.065 | 0.195 | 0.993 | 0.311
DeepSDF 0.072 | 0.036 | 0.068 | 0.219 | 0.088
EMD, mean

AtlasNet-Sph. 0.071 | 0.038 | 0.060 | 0.085 | 0.050
AtlasNet-25 0.064 | 0.041 | 0.073 | 0.062 | 0.063
DeepSDF 0.049 | 0.033 | 0.050 | 0.059 | 0.047
Mesh acc., mean

AtlasNet-Sph. 0.033 | 0.013 | 0.032 | 0.054 | 0.017
AtlasNet-25 0.018 | 0.013 | 0.014 | 0.042 | 0.017
DeepSDF 0.009 | 0.004 | 0.012 | 0.013 | 0.004




Results and Discussion

* Shape completion from partial range scans

* Notice that, the same trained model can be applied to different reconstruction tasks,
unlike Octnet.

lower is better higher is better
Method CD, CD, Mesh Mesh Cos
\Metric med. | mean | EMD acc. comp. sim.

chair
3D-EPN 2.25 2.83 0.084 | 0.059 0.209 | 0.752
DeepSDF 1.28 2.11 0.071 | 0.049 0.500 | 0.766
plane
3D-EPN 1.63 2.19 0.063 | 0.040 0.165 0.710
DeepSDF | 0.37 1.16 0.049 | 0.032 0.722 | 0.823
sofa
3D-EPN 2.03 2.18 0.071 | 0.049 0.254 | 0.742
DeepSDF | 0.82 1.59 0.059 | 0.041 0.541 0.810
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(a) Input Depth (b) Completion (ours) (¢) Second View (ours) (d) Ground truth (e) 3D-EPN



Results and Discussion

 Qverview of the benchmarked methods

Complex Closed Surface Model Inf. Eval.
Method Type Discretization | topologies | surfaces | normals | size (GB) | time (s) tasks
3D-EPN [15] | Voxel SDF 32° voxels v v v 0.42 - C
OGN [49] Octree 256° voxels v v 0.54 0.32 K
AtlasNet Parametric | patch v 0.015 0.01 K,U
-Sphere [19] mesh
AtlasNet Parametric 25 patches v 0.172 0.32 K, U
-25 [19] mesh
DeepSDF Continuous none v v v 0.0074 0.72 K,U,C
(ours) SDF




Results and Discussion

* Feature Space Interpolation




Limitation

* Inference need optimizing latent code with SDF -> not applicable to
2D observation.

e DISN (Wang et al. 2019) addressed this problem with a novel image encoder.
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* The inference time is slow even assuming models are in their canonical pose.
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