CSC2457 3D & Geometric Deep Learning

Implicit Neural Representations with Periodic Activation Functions

Vincent Sitzmann*, Julien N. P. Martel*, Alexander Bergman, David B. Lindell, Gordon Wetzstein

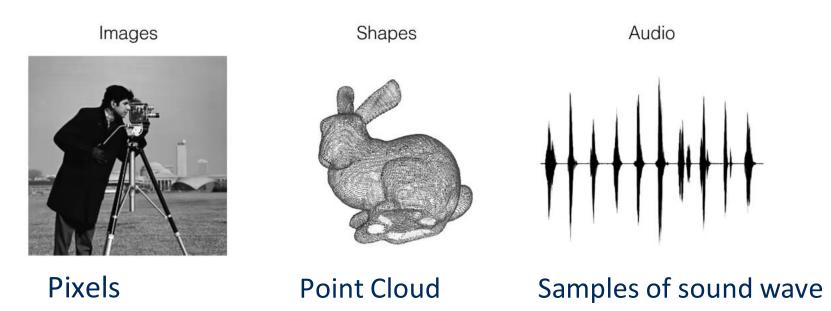
2021-03-30

Presenter: Zikun Chen

Instructor: Animesh Garg

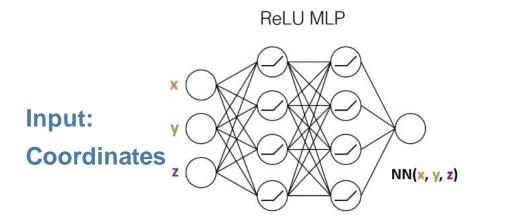
Representation of Signals: Discrete

Traditionally, discrete representations for signals are used.



Signal Parametrized by Neural Networks

In recent years, there's been significant research interest on implicit neural representations.



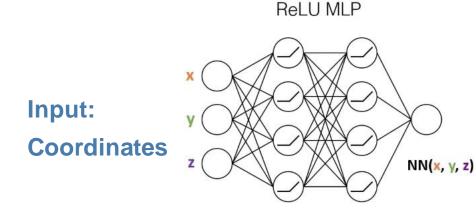
Implicit neural representation

Signed distance

Mescheder et al. [2018] Park et al. [2018] Gropp et al. [2020]

Benefits of Implicit Neural Representations

- Unlike discrete representations:
 - Agnostic to grid resolution: model memory scales with signal complexity
 - Differentiations computed automatically



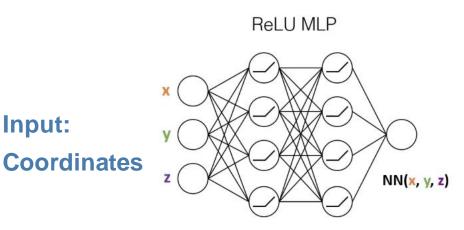
Mescheder et al. [2018] Park et al. [2018] Gropp et al. [2020]

Implicit neural representation

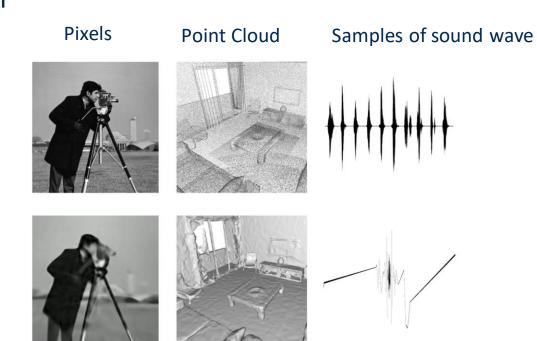
Output: SDF

Problems of Implicit Neural Representations

 Compared to discrete representations, can fail to encode high frequency details

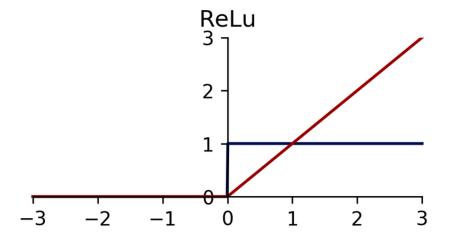


Implicit neural representation

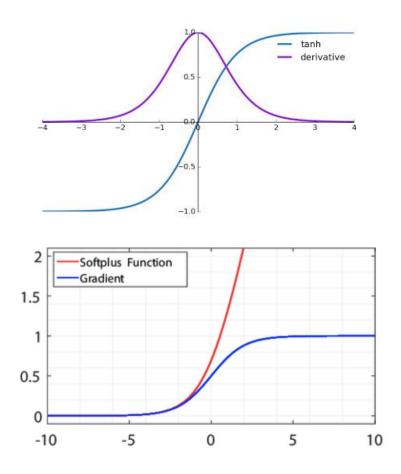


blurry edges/ missing curtains/ missing frequencies

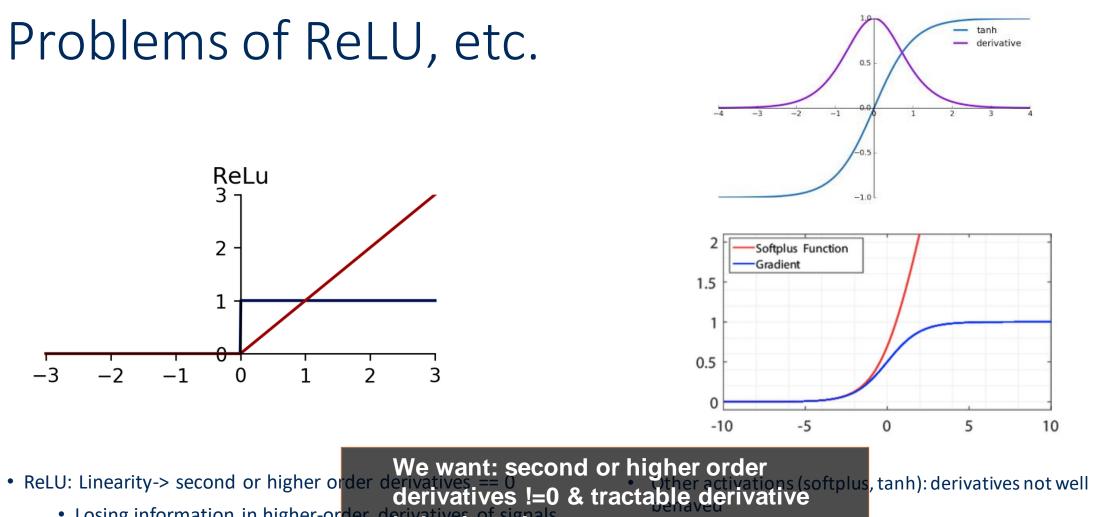
Problems of ReLU, etc.



- ReLU: Linearity-> second or higher order derivatives == 0
 - Losing information in higher-order derivatives of signals



 Other activations (softplus, tanh): derivatives not well behaved



 Losing information in higher-order derivatives of signals behaviours!

SIREN: Sinusoidal Representation Networks

Contributions

- Prior work:

- periodic activation:
 - Hypernetwork functional image representation
 - Constructed a hypernetwork to produce weights of a target network, which parametrizes RGB images. Cosine was used as the activation function of the target network.
 - didn't study behaviours of derivatives or other applications of cosine activation
 - Taming the waves: sine as activation function in deep neural networks
 - Lack of preliminary investigation of potential benefits of sine
- SIREN proposes:
 - A simple MLP architecture for implicit neural representations that uses **sine** as activation function
- Compared to prior work, this paper:
 - Proposes a continuous implicit neural representation using periodic activation that fits complicated natural signals, as well as their **derivatives**, robustly
 - Provides an initialization scheme for this type of network and validates that weights can be learned using hypernetworks
 - Demonstrates a wide range of applications

Problem Setting

Find a class of functions Φ that satisfies the relation F:

$$F(\mathbf{x}, \Phi, \nabla_{\mathbf{x}} \Phi, \nabla_{\mathbf{x}}^2 \Phi, \ldots) = 0, \quad \Phi : \mathbf{x} \mapsto \Phi(\mathbf{x}).$$

On the continuous domain of x.

Φ: implicitly defined by the relation F;

Neural networks that parametrize Φ : implicit neural representations

Problem Setting

$$F\left(\mathbf{x}, \Phi, \nabla_{\mathbf{x}} \Phi, \nabla_{\mathbf{x}}^{2} \Phi, \ldots\right) = 0, \quad \Phi : \mathbf{x} \mapsto \Phi(\mathbf{x}).$$

$$\int \\ \text{find } \Phi(\mathbf{x})$$

subject to $C_m(\mathbf{a}(\mathbf{x}), \Phi(\mathbf{x}), \nabla \Phi(\mathbf{x}), ...) = 0, \ \forall \mathbf{x} \in \Omega_m, \ m = 1, ..., M$

Problem Setting: example

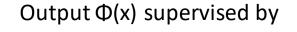
Each Input x

 $\mathbf{x} \in \mathbb{R}^2$

spatial coords.

 $f(\mathbf{x}) \in \mathbb{R}^3$

RGB values



Find Φ that minimizes

$$\int_{\Omega} \|\Phi(\mathbf{x}) - f(\mathbf{x})\| \, \mathrm{d}\mathbf{x}$$

Cm: 2-norm of $\Phi(x)$ -f(x)

Problem Setting: example

Each Input x

 $\mathbf{x} \in \mathbb{R}^2$

spatial coords.

Gradients of the target image

 $\nabla f(\mathbf{x})$

Output $\Phi(x)$ supervised by Edge Image

Find Φ that minimizes

$$\int_{\Omega} \left\| \boldsymbol{\Phi}(\mathbf{x}) - \boldsymbol{f}(\mathbf{x}) \right\| d\mathbf{x}$$

Cm: 2-norm of $\Phi'(x)$ -f'(x)

SIREN: Architecture

 $\Phi(\mathbf{x}) = \mathbf{W}_n \left(\phi_{n-1} \circ \phi_{n-2} \circ \ldots \circ \phi_0 \right)(\mathbf{x}) + \mathbf{b}_n, \quad \mathbf{x}_i \mapsto \phi_i(\mathbf{x}_i) = \sin\left(\mathbf{W}_i \mathbf{x}_i + \mathbf{b}_i\right)$

 $\phi_i : \mathbb{R}^{M_i} \mapsto \mathbb{R}^{N_i}$ is the i^{th} layer of the network

 $\mathbf{W}_i \in \mathbb{R}^{N_i \times M_i}$

$$\mathbf{b}_i \in \mathbb{R}^{N_i}$$

 $\mathbf{x}_i \in \mathbb{R}^{M_i}$

- Basically MLPs with Sine activations

SIREN: Initialization scheme

- **Crucial.** Without carefully chosen uniformly distributed weights, SIREN doesn't perform well
- Key idea: preserve the distribution of activations, such that the final output at initialization does not depend of the number of layers

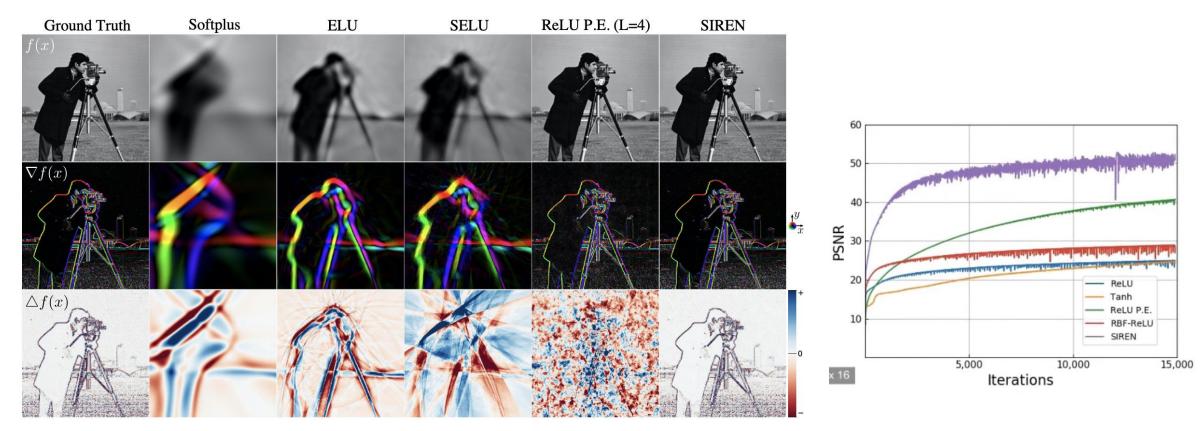
SIREN: Initialization scheme

- Assuming that x~U(-1,1), x ($\mathbf{x} \in \mathbb{R}^n$
- Initialize the weights W of the first layer such that sin(30*Wx+b) spans multiple periods over [-1,1]

SIREN: Initialization scheme

- Assuming that x~U(-1,1), x $\cdot \mathbf{x} \in \mathbb{R}^n$
- For other layers with input x in n-dimensional space, initialize weights according to U(-√([®] 6/n), √([®] 6/n))
 - Ensures that input to each activation follows N(0,1) approximately

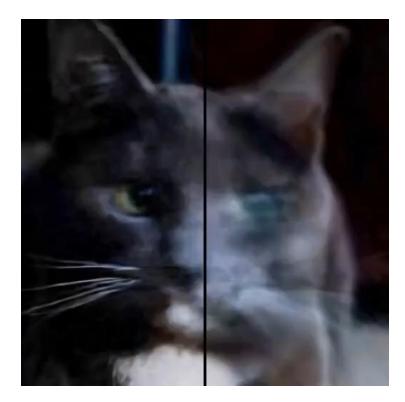
Experiments: Image reconstruction



• Derivatives not well behaved: Losing gradient informations in reconstructed images

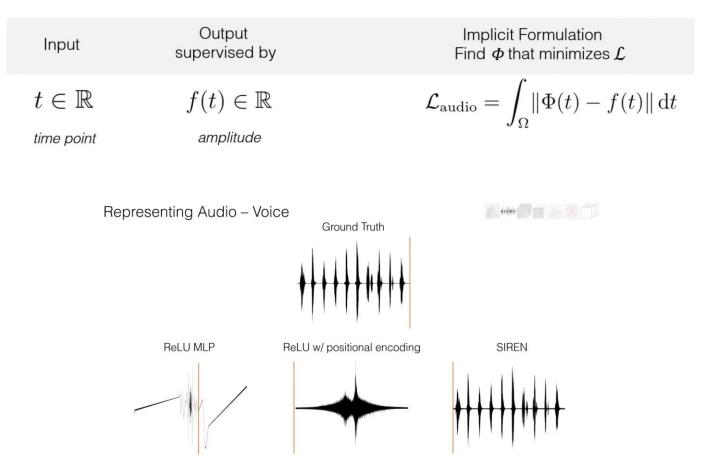
• SIREN: gradient/ laplacian well preserved

Experiments: Video reconstruction



• SIREN: more high frequency details preserved

Experiments: Audio reconstruction



Experiments: Poisson equation

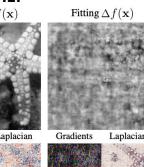
-gradients ∇f , Laplacian $\Delta f = \nabla \cdot \nabla f$

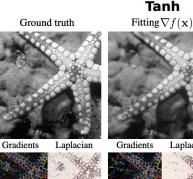
$$\mathcal{L}_{\text{grad.}} = \int_{\Omega} \| \boldsymbol{\nabla}_{\mathbf{x}} \Phi(\mathbf{x}) - \boldsymbol{\nabla}_{\mathbf{x}} f(\mathbf{x}) \| \ d\mathbf{x},$$

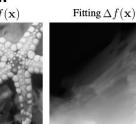
or
$$\mathcal{L}_{ ext{lapl.}} = \int_{\Omega} \lVert \Delta \Phi(\mathbf{x}) - \Delta f(\mathbf{x})
Vert \ d\mathbf{x}.$$

Experiments: Poisson equation-Image reconstruction

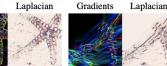




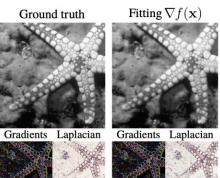


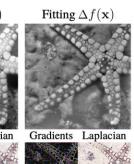


Gradients Laplacian Gradients



- tanh&ReLU P.E.: both failed for fitting laplacian
- SIREN: minor issues due to the ill-posed problem nature





Model	Tanh		ReLU P.E.		SIREN	
Supervised on	Grad.	Laplacian	Grad.	Laplacian	Grad.	Laplacian
Reconstructed Image	25.79	7.11	26.35	11.14	32.91	14.95
Reconstructed Grad.	19.11	11.14	19.33	11.35	46.85	23.45
Reconstructed Laplacian	18.59	16.35	14.24	18.31	19.88	57.13

Quantitative results for PSNR

SIREN

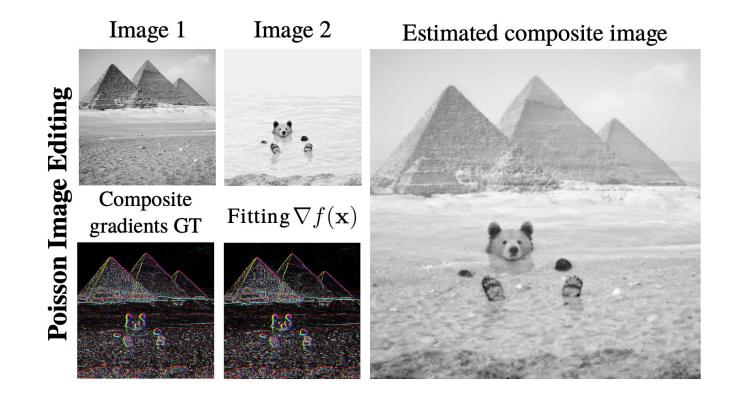
Experiments: Poisson equation-Image editing

- Fit 2 SIRENs f1, f2 for image reconstruction with loss function

$$\mathcal{L}_{\text{grad.}} = \int_{\Omega} \| \boldsymbol{\nabla}_{\mathbf{x}} \Phi(\mathbf{x}) - \boldsymbol{\nabla}_{\mathbf{x}} f(\mathbf{x}) \| \ d\mathbf{x},$$

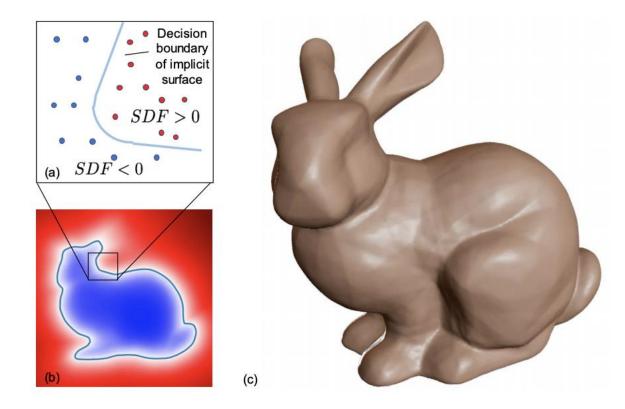
- Fit a third SIREN for image editing with the same loss function as above, except that $\nabla_x f(x) = \alpha \cdot \nabla f_1(x) + (1-\alpha) \cdot \nabla f_2(x)$, $\alpha \in [0,1]$

Experiments: Poisson equation-Image editing



Decent results with gradient supervision only!

Quick recap: Signed distance function (SDF)



Park et al., 2019

Experiments: Representing shapes with SDF

$$\mathcal{L}_{\rm sdf} = \int_{\Omega} \left\| \left| \boldsymbol{\nabla}_{\mathbf{x}} \Phi(\mathbf{x}) \right| - 1 \right\| d\mathbf{x} + \int_{\Omega_0} \left\| \Phi(\mathbf{x}) \right\| + \left(1 - \left\langle \boldsymbol{\nabla}_{\mathbf{x}} \Phi(\mathbf{x}), \mathbf{n}(\mathbf{x}) \right\rangle \right) d\mathbf{x} + \int_{\Omega \setminus \Omega_0} \psi(\Phi(\mathbf{x})) d\mathbf{x}$$

Gradient of SDF == 1

SDF = 0 when x is on the surface

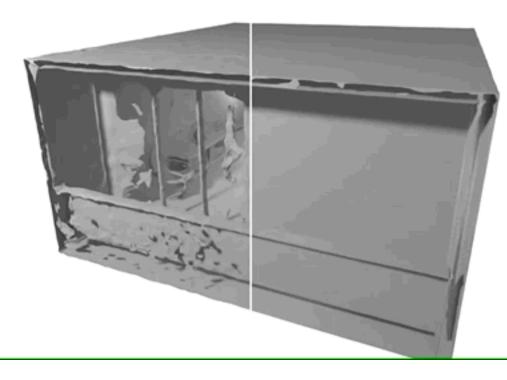
 $\nabla x \Phi(x) == normals$

$$\begin{split} \psi(x) &= \exp(-\alpha \cdot |\Phi(x)|), \\ \alpha \gg 1 \\ \text{Penalize } \Phi(x) == 0 \text{ when} \\ x \text{ is not on the surface} \end{split}$$

Experiments: Representing shapes with SDF

Fine details missing in the baseline(left)

Rel II



Experiments: Solving Differential Equations

Helmholtz equation

$$H(m) \Phi(\mathbf{x}) = -f(\mathbf{x})$$
, with $H(m) = (\Delta + m(\mathbf{x}) w^2)$.

Wave field (unknown)

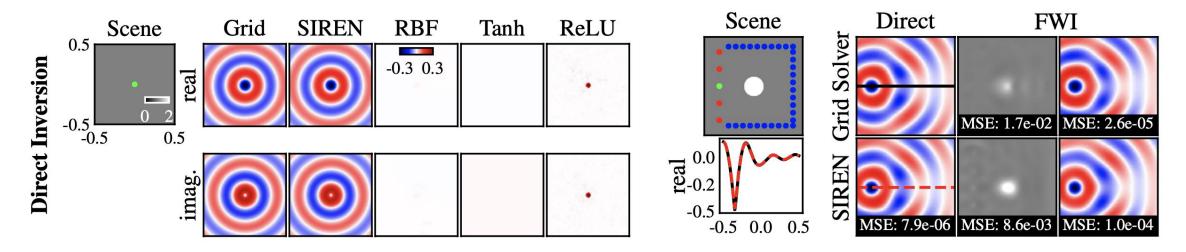
Known source function

 $1/(c(x))^2$, c(x): wave velocity

Experiments: Solving Differential Equations

c(x) known

c(x) unknown



Only output of SIREN was able to match results from a numerical solver

SIREN velocity model outperformed principled solver

Experiments: Learning priors

Discussions

- Poisson image editing is nothing new: Mixing gradients
- The authors didn't give a formal definition of "well-behaved", which is apparently an important property of sine activation.
- The authors mentioned that SIREN initialized improperly had bad performance, but didn't link this back to the "key idea" in the initialization scheme. Could've done an ablation study?
- PyTorch/ Tensorflow also follows a similar default initialization scheme except that it also depends on output dimensions: sqrt(6 / (fan_in + fan_out))

Contributions (Recap)

- Prior work:

- periodic activation:
 - Hypernetwork functional image representation
 - Constructed a hypernetwork to produce weights of a target network, which parametrizes RGB images. Cosine was used as the activation function of the target network.
 - didn't study behaviours of derivatives or other applications of cosine activation
 - Taming the waves: sine as activation function in deep neural networks
 - Lack of preliminary investigation of potential benefits of sine
- SIREN proposes:
 - A simple MLP architecture for implicit neural representations that uses **sine** as activation function
- Compared to prior work, this paper:
 - Proposes a continuous implicit neural representation using periodic activation that fits complicated natural signals, as well as their **derivatives**, robustly
 - Provides an initialization scheme for this type of network and validates that weights can be learned using hypernetworks
 - Demonstrates a wide range of applications