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Motivation

- A key signature of human intelligence – “infinite use of finite means” 
(Humboldt 1836, Chomsky 1965) or combinatorial generalization

Image credit: Graph R-CNN for Scene Graph Generation (Yang et al.)
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- A key signature of human intelligence – “infinite use of finite means” 
(Humboldt 1836, Chomsky 1965) or combinatorial generalization

Example) 

Language: 

Dog bites man

Man bites dog



Motivation

- Humans solve novel problems by composing familiar skills and 
routines

- Humans draw analogies by aligning the relational structure between 
two domains

- Essentially, we understand the world in compositional terms. 



Motivation

- In pre-deep learning era, machine learning community focused on 
structural reasoning 

- Graphical models, causal reasoning, symbolic logic

- Need structural assumptions or inductive biases to build those 
models 

- Wrong assumptions lead to bad models



Motivation

- Deep learning or neural network models do not need such strong 
structural assumptions, but had not been successful because

- Not enough data, not enough compute

Image credit: https://niessner.github.io/I2DL/



Motivation

- With gigantic datasets and 
advancement in computing 
resources (e.g. GPU), deep learning 
models are thriving

Image credit: Analyzing and Improving the Image Quality of StyleGAN (Karras et al. 2019)



Motivation
- Let’s add structural assumptions to  neural network models!

- In this paper, we focus on graphs + neural networks
- Perform differentiable computations over vertices and edges

- The representation and relations between vertices can be learned, not 
pre-defined

- Arbitrary pairwise relational structure

- A key signature of human intelligence – “infinite use of finite 
means”  

- Combination of concepts and relationship between them can be 
naturally represented with graphs

Image credit: Analyzing and Improving the Image Quality of StyleGAN (Karras et al. 2019)



What can we represent with graphs?



Contributions 

- This is a position paper that argues “combinatorial generalization” 
must be a top priority for AI to achieve human-level intelligence

- Analyzes different kinds of inductive biases in neural network models

- Proposes a general formulation of Graph Networks



Definitions

- Entity (Vertices): input data / objects / their representations

- Relations (Edges): specifies how entities are related

In Neural Nets:



Inductive Bias

- Combination of concepts and relationship between them can be 
naturally represented with graphs -> strong relational inductive bias

- Inductive bias allows a learning algorithm to prioritize one solution 
over another, independent of the observed data (Mitchell, 1980)

- E.g. Bayesian models 



Relational Inductive Bias

- Inductive biases that impose constraints on relationships and 
interactions among entities in a learning process



Rel. Inductive Bias in Neural Networks

-
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Rel. Inductive Bias in Neural Networks

- Strong relational inductive bias 
beyond what other layers can provide

- Operates on arbitrary relational 
structure



Rel. Inductive Bias in Neural Networks

- Invariant to order of nodes

- Shared computations across all 
node/edges

- > combinatorial generalization
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GraphNetwork (GN) framework



GraphNetwork (GN) framework

- Update functions per variable (e.g. node / edge)



GraphNetwork (GN) framework

- Aggregation functions        must be invariant to permutations 
of the inputs and take variable number of inputs
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GraphNetwork (GN) framework
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GraphNetwork (GN) framework

- Multi-step message passing



GraphNetwork (GN) framework

- Inference can be based on:

Vertices: inferring properties of each entity

Edges: inferring relationships of vertices

Global representation: inferring properties of the whole system



Previous works interpreted as GN framework

• Non-Local Neural Networks (Wang et al. 2018)
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Limitations

- Graph Networks perform well for tasks that require relational 
reasoning but they crucially need the edges pre-defined. 

- Not easy to modify graph structure after initialization

- No experimental results

- Comparison of different variants would provide some insights



Limitations

- This a great review paper and it unites different graph network 
architectures as a single general framework. But it would have been 
better if there are some critical insights:

- Why is having such a general framework beneficial?

- What knowledge/insight do we get out of doing this unification process and 
how can we make GNs better?



Summary 

- This is a position paper that argues “combinatorial generalization” 
must be a top priority for AI to achieve human-level intelligence

- Analyzes different kinds of inductive biases in neural network models

- Proposes a general formulation of Graph Networks


