3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans

2020/02/07

Presenter: Haoping Xu

Authors: Ji Hou, Angela Dai, Matthias Nießner

Motivation and Main Problem

- Semantic instance segmentation
 - Extend the 2D task to 3D
 - Bonding box
 - Class
 - 3D mask
 - Fuse both color and depth feature
 - Others only focus on 3D geometry

Why RGB-D?

- Sensors readily available
 - Low price tag (\$300 700)
 - Available as consumer product
 - Mature product eco-system
 - Stable code base and utilities
 - Integration with application (i.e. ROS)
- Color signal cannot be ignored
 - Development in 2D CV
- Depth map should be the focus

Contributions

- Proposed a novel network to preform 3D semantic instance segmentation in RGB-D scenes.
 - New SOTA, improve mAP by 13.5 on ScanNet
- Unlike previous works that solely focuses on one feature
 - Either 2D frames (mulit-view fusion)
 - Or 3D geometry (PointNet)
- Fuse both features together
 - Proposed a back-projection method for color to geometry mapping
 - Extend the 2D Mask-RCNN pipeline to 3D

General Background : Mask RCNN

- Backbone
 - Extract features via conv
- RPN & Rol
 - Prepose instance region
 - Crop the feature region for down strain tasks
- Classification
- Bounding box
- Mask prediction
 - Pre pixel map of the instance

Problem Setting

- Input: RGB-D scan
 - Depth: truncated sign distance field (TSDF)
 - RGB image: map to geometry based on 6DoF pose
- Output: semantic instance segmentation
 - Bounding Box
 - Class prediction
 - Pre-voxel 3D mask

• •

Decision

of implicit

surface

SDF > 0

Network architecture

Mask RCNN

- 1. Backbone
- 2. RPN & Rol
- 3. Classification
- 4. Bounding box
- 5. Mask prediction

3D-SIS

2D Backbone

- Back-project 2D to 3D:
 - Naive way: direct projection leads to down sampling
 - Better way: extract color feature before projection
- Pre-trained model:
 - ENet trained on NYUv2 (agnostic to network choice)
- Multi-view:
 - max pooling on 3D color feature
- Fuse with 3D:
 - do a 3D conv before concat with 3D geometry

3D Backbone

- Voxel dimension:
 - size = 4.69 cm^3

- 96 * 96 * 48 voxels in 4.5m * 4.5m * 2.25m scene
- At test time: fixed height dimension and voxel size, variable xy size.
- 3D convolution:
 - 3D ResNet structure
 - Color and 3D process separately before join together
- Two branches backbone
 - Detaction branch reduce spatial dimension by 4
 - Segmentation branch maintain the dimension
 - Better result and train time compared to single branch, why?

RPN & Rol

• Anchor selection:

- K-mean (K=14) on training data
- Split into small(1m³) and large, ratio= 3:11
- Process separately at RPN and Rol
- 3D RPN -> bounding box
 - Objectiveness = CE of two class. Positive(IoU>0.35), negative(IoU<0.15).
 - Δx , Δy , Δz , Δw , Δh , Δl for each anchor
- 3D Rol -> class label
 - Crop out feature based on bounding box
 - Rol max pooling to 4*4*4 blocks
 - Class prediction with MLP

 $\Delta_x = \frac{\mu - \mu_{anchor}}{\phi_{anchor}} \qquad \Delta_w = \ln(\frac{\phi}{\phi_{anchor}})$

where μ is the box center point and ϕ is the box width.

3D Instance Segmentation

- Crop feature
 - Use bounding box to get fused feature
- Mask prediction
 - Predict mask for each class
 - Select the mask channel with class prediction
- Voxel resolution unchanged
 - Unlike detection task, resolution unchanged along backbone
 - Better performance than lower res
 - May due to the low res nature of voxel rigid

Experimental Results

Two datasets: ScanNetV2 (real) and SUNCG (synthetic)

	cab	bed	chair	sofa	tabl	door	wind	bkshf	pic	cntr	desk	curt	fridg	showr	toil	sink	bath	ofurn	avg
Mask R-CNN [12]	5.3	0.2	0.2	10.7	2.0	4.5	0.6	0.0	23.8	0.2	0.0	2.1	6.5	0.0	2.0	1.4	33.3	2.4	5.8
SGPN [35]	6.5	39.0	27.5	35.1	16.8	8.7	13.8	16.9	1.4	2.9	0.0	6.9	2.7	0.0	43.8	11.2	20.8	4.3	14.3
MTML	2.7	61.4	39.0	50.0	10.5	10.0	0.3	33.7	0.0	0.0	0.1	11.8	16.7	14.3	57.0	4.6	66.7	2.8	21.2
3D-BEVIS [10]	3.5	56.6	39.4	60.4	18.1	9.9	17.1	7.6	2.5	2.7	9.8	3.5	9.8	37.5	85.4	12.6	66.7	3.0	24.8
R-PointNet [37]	34.8	40.5	58.9	39.6	27.5	28.3	24.5	31.1	2.8	5.4	12.6	6.8	21.9	21.4	82.1	33.1	50.0	29.0	30.6
3D-SIS (Ours)	13.4	55.4	58.7	72.8	22.4	30.7	18.1	31.9	0.6	0.0	12.1	0.0	54.1	100.0	88.9	4.5	66.7	21.0	36.2

ScanNetV2

	cab	bed	chair	sofa	tabl	door	wind	bkshf	cntr	desk	shlf	curt	drsr	mirr	tv	nigh	toil	sink	lamp	bath	ostr	ofurn	oprop	avg
Seg-Cluster	16.8	16.2	15.6	11.8	14.5	10.0	11.7	27.2	20.0	25.7	10.0	0.0	15.0	0.0	20.0	27.8	39.5	22.9	10.7	38.9	10.4	0.0	12.3	16.4
Mask R-CNN [12]	14.9	19.0	19.5	13.5	12.2	11.7	14.2	35.0	15.7	18.3	13.7	0.0	24.4	23.1	26.0	28.8	51.2	28.1	14.7	32.2	11.4	10.7	19.5	19.9
SGPN [35]	18.6	39.2	28.5	46.5	26.7	21.8	15.9	0.0	24.9	23.9	16.3	20.8	15.1	10.7	0.0	17.7	35.1	37.0	22.9	34.2	17.7	31.5	13.9	22.5
Ours(geo only)	23.2	78.6	47.7	63.3	37.0	19.6	0.0	0.0	21.3	34.4	16.8	0.0	16.7	0.0	10.0	22.8	59.7	49.2	10.0	77.2	10.0	0.0	19.3	26.8
Ours(geo+1view)	22.2	70.8	48.5	66.6	44.4	10.0	0.0	63.9	25.8	32.2	17.8	0.0	25.3	0.0	0.0	14.7	37.0	55.5	20.5	58.2	18.0	20.0	17.9	29.1
Ours(geo+3views)	26.5	78.4	48.2	59.5	42.8	26.1	0.0	30.0	22.7	39.4	17.3	0.0	36.2	0.0	10.0	10.0	37.0	50.8	16.8	59.3	10.0	36.4	17.8	29.4
Ours(geo+5views)	20.5	69.4	56.2	64.5	43.8	17.8	0.0	30.0	32.3	33.5	21.0	0.0	34.2	0.0	10.0	20.0	56.7	56.2	17.6	56.2	10.0	35.5	17.8	30.6

SUNCG

Experimental Results

Discussion of results

- Overall improved result
 - SOTA when it released on mAP@0.5
 - Beats pure geometry and color based methods
- Show effectiveness of color and geometry fusion
 - Show improved mAP compared to geo only version
 - Also show multi-view boosts mAP

SUNCG

ScanNetV2

	mAP@0.25	mAP@0.5		mAP@0.25	mAP@0.5
Deep Sliding Shapes [30]	12.8	6.2	Deep Sliding Shapes [30]	15.2	6.8
Mask R-CNN 2D-3D [12]	20.4	10.5	Mask R-CNN 2D-3D [12]	17.3	10.5
Frustum PointNet [22]	24.9	10.8	Frustum PointNet [22]	19.8	10.8
Ours - 3D-SIS (geo only)	27.8	21.9	Ours – 3D-SIS (geo only)	27.6	16.0
Ours - 3D-SIS (geo+1view)	30.9	23.8	Ours - 3D-SIS (geo+1view)	35.1	18.7
Ours - 3D-SIS (geo+3views)	31.3	24.2	Ours - 3D-SIS (geo+3views)	36.6	19.0
Ours - 3D-SIS (geo+5views)	32.2	24.7	Ours – 3D-SIS (geo+5views)	40.2	22.5

Critique / Limitations / Open Issues

- RoI align better than RoI pooling in 3D?
 - In 2D mask rcnn, RoI align can increase performance
 - Would be good to compare them in 3D
- Discuss more about voxel resolution
 - Two branch backbone shows the impact of voxel resolution
 - Lack of discussion about that in paper
- Marginal effect of multi-view?
 - As ScanNet only has 5 images per data point, result stops at 5 view
 - Use SUNCG can study performance change for more images

Contributions (Recap)

- 3D semantic instance segmentation has wide application and hard due to high dimension
- Previous networks focus on either color or geometry
- Propose a network 3D-SIS
 - fuse two features together (RGB mutli-view and depth)
 - Extend mask rcnn pipeline to 3D
- 3D-SIS achieves STOA on ScanNetV2 and good result on SUNCG
- Problem the reading is discussing