CS 8303

Deep Reinforcement Learning

Lec 9: Optimal Control & Planning
Fall 2024

Animesh Garg

Slides from Sergey Levine

Today’s Lecture

Introduction to model-based reinforcement learning

What if we know the dynamics? How can we make decisions?
Stochastic optimization methods

Monte Carlo tree search (MCTS)

Trajectory optimization

A S

e Goals:

* Understand how we can perform planning with known dynamics models in
discrete and continuous spaces

Recap: the reinforcement learning objective

\ \
\ \ss \
\ X\ \e7 \ \ \ \
\ \ \\ \ \2 W\ W3 \
i g\ T i
= ¥ gt N\ - “ls 3 % h3 dense’| |dens: * a #
\ £\ \\ \\ N - \\
\ 384 \ 384 256 100(\
3 256 Max -
1 Max pooling 40% 4096
l ; /
p(S |S7 a)

J

T
po(st ... 87 87) = pls: H (a¢|se)p(ses1lse, ar)
\ ' t—1

7o (T)

0* = arg max Erpo (1) [Zt: r(st, at)]

Recap: model-free reinforcement learning

@

(s']s, a)
Y

T
pe(sl,al,---,ST,aT = p(s1 H atlstw
\ Y :

assume this is unknown
don’t even attempt to learn it

7o (T)

0* = arg max Erpo (1) [Z r(st, at)]
t

What if we knew the transition dynamics?

* Often we do know the dynamics
1. Games (e.g., Atari games, chess, Go)
2. Easily modeled systems (e.g., navigating a car)
3. Simulated environments (e.g., simulated robots, video games)

e Often we can learn the dynamics
1. System identification — fit unknown parameters of a known model
2. Learning —fit a general-purpose model to observed transition data

Does knowing the dynamics make things easier?

Often, yes!

Model-based reinforcement learning

1. Model-based reinforcement learning: learn the transition dynamics,
then figure out how to choose actions

2. Today: how can we make decisions if we know the dynamics?
a. How can we choose actions under perfect knowledge of the system dynamics?
b. Optimal control, trajectory optimization, planning

3. Next week: how can we learn unknown dynamics?
How can we then also learn policies? (e.g. by imitating optimal control)

The objective

ooooooo

min logp(eaten by tiger|ay,...,ar)
al,...,.ar

T
Il'lll’{ljl Zc(st,at) S.t. 8¢ = f(st_l,at_l)
T

Al ..y
t=1

The deterministic case

T

ai,...,ar = argai‘rr.l.z.u;T Zr(st,at) s.t. arr1 = f(sg, a)

t=1

The stochastic open-loop case

why is this suboptimal?

Aside: terminology

what is this “loop”?

closed-loop open-loop

only sentatt=1,
then it’s one-way!

The stochastic closed-loop case

form of 77 \
neural net %\O

P time-varying linear
Kys: + k¢ ’b\
\o“

(more on this later)

T =argmax F ., [Z r(sSt, at)]
t

Open-Loop Planning

But for now, open-loop planning

ai,..., ar = argaimaﬁTZr(st,at) s.t. arr1 = f(sg, a)
""" t=1

Stochastic optimization

abstract away optimal control /planning:

ap,...,ar = arg_max (a1,...,ar) A:argmng(A)
""" \ J
|

don’t care what this is

simplest method: guess & check “random shooting method”

1. pick Aq,..., Ay from some distribution (e.g., uniform)

2. choose A; based on arg max; J(A;)

Cross-entropy method (CEM)

1. pick Ay, ..., Ap{{rom some distributionde.g., uniform)

2. choose A; based on arg max; J(A;)

can we do better?

typically use Gaussian
J(A) distribution
R see also: CMA-ES (sort of like
/ CEM with momentum)

> A
cross-entropy method with continuous-valued inputs:
= 1. sample Aq,..., Ay from p(A)
2. evaluate J(Aq),...,J(AN)
3. pick the elites A;,, ..., A;,, with the highest value, where M < N
‘w4, refit p(A) to the elites A;,..., A

M

What's the upside?

1. Very fastif parallelized
2. Extremely simple

What’s the problem?

1. Very harsh dimensionality limit
2. Only open-loop planning

Discrete case: Monte Carlo tree search (MCTS)

discrete planning as a search problem

S1
/7\3 <,
D \\/
S9 52

N 2 D 2

o 2
4 \ 7 N\
Y 4 ~Y g
S3 S3 S3 S3

= TLEEEER lslele]e]s |- B
~~ O (©)] @] (o] (e] 4

Discrete case: Monte Carlo tree search (MCTS)

how to approximate value without full tree?

51

= TLEEEER lslele]e]s |- B
~~ O (©)] @] (o] (e] 4

e.g., random policy /

m(at|st)
T(at|s¢)
T(at|s¢)

Discrete case: Monte Carlo tree search (MCTS)

can’t search all paths — where to search first?

— 51
N\
Eni 7 %
¥ N
+10 +15
S S9
D 2
EE)
- g
5 5
+ +
50 S S
S =
(-0
e

St a¢

intuition: choose nodes with best reward, but also prefer rarely visited nodes

Discrete case: Monte Carlo tree search (MCTS)

generic MCT'S sketch 51
1. find a leaf s; using TreePolicy(s1) //\B 2,
N _
2. evaluate the leaf using DefaultPolicy(s;) Q=10 Y N ﬁ‘ 12
3. update all values in tree between s; and s; N=1 5o S9
take best action from s g g
))
s =
= =

UCT TreePolicy(s;)
if s; not fully expanded, choose new a;

else choose child with best Score(s;y1)

Discrete case: Monte Carlo tree search (MCTS)

Q=30
generic MCT'S sketch N=3 S1
1. find a leaf s; using TreePolicy(s1) 2‘: ; S N
2. evaluate the leaf using DefaultPolicy(s;) Q=20 P N ~ 4 1“ (le ;2
T — N = =
3. update all values in tree between s; and s; =1 5o S5
take best action from s; 2 S 2
a N\ 7 \
SVE ¢ \Y >
UCT TreePoli Q=12 = Q=28 Q=26
reePolicy (s¢) N1 s S3 N=1 §3Q=10 S3 N=1
if s; not fully expanded, choose new a; N=1

else choose child with best Score(s;y1)

Score(s;) =]?7((2)) 4+ 20\/2 lnj\];f((sig—l)

Additional reading

1. Browne, Powley, Whitehouse, Lucas, Cowling, Rohlfshagen, Tavener,
Perez, Samothrakis, Colton. (2012). A Survey of Monte Carlo Tree
Search Methods.

e Survey of MCTS methods and basic summary.

Trajectory Optimization with Derivatives

Can we use derivatives?

T
min Zc(xt,ut) s.t. x¢ = f(X¢—1,04—1)

ui,...,ur
t=1

min c(xy,uy) +c(f(x1,u1),uz) +---+c(f(f(...)...),ur)

ui,...,ur

usual story: differentiate via backpropagation and optimize!

d d de dc _
need / : / : , s; — state Xt sta?e
dx; dug dx; du a; — action u; — action
o

in practice, it really helps to use a

21d 6rder method! ll’”’” " o
LR \“!- ’ sonnos

Shooting methods vs collocation

shooting method: optimize over actions only

min c(xq,uy) + c(f(x1,uy),us) +---+c(f(f(...)...),ur)

Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints
T

min Zc(xt,ut) s.t. xp = f(Xp_1,Wp_1)

ul,...,.u7r,X1,...,. X717
t=1

/V\/

Linear case: LQR

ui,...,ur

Linear case: LQR

min c(xy,u7) + c(f(x1, 0y
ul,...,ur

1 T
Q(XT,UT) = const + 5 [i; :| CT [

x7 (unknown)

VUTQ(XTa uT) — CUT,XTXT —I_ CuT,uTuT _|_ CT — 0

ur = —C_l

ur,ur (CuTaXTXT —I_ CuT)

ur

ur = KTXT + kT

only term that
depends on ur

C _ CXTaXT
'~ c
ur, X7
C
CTr = *r
Cur
. —1
KT T _CUT,UTCU-T:XT
kr = —C;}
T — uT,uTCuT

Linear case: LQR

ur = Krxr + kr Kr =—-C3. o, Curxr kr = —Cg. 4, Cur
1] xr 1" X xr 1"
Q(XT,UT) = const + 5 [u; :| CT [ur';:] + |: u;] Cr

Since uyp is fully determined by x7, we can eliminate it via substitution!

V(x1) = const+ [T }TCT [T]+[T]TcT

2 | Krxr +kr Krxr + kt Krxr + kt
1 1 1 1
V(XT) :ingXT,X’rXT + §XgCXTauTKTXT =+ §X§K%:CUT,XTXT T §X%K%CUT711TKTXT+

1
xm K5 Cuyp up K7 + 5:)(;%(JXT,Hqup + Xy, + x7Khcy, + const

1
V(x1) = const + §XgVTXT + XV

V= CXT;XT -+ CXT:‘JTKT T KgcuT:XT - K%CUT,UTKT

VT = Cxy T CXT,UT kT + K%CUT - KgcuT,UT kT

Linear case: LQR

Solve for uy_1 in terms of x7_1 uy_q affects xp!

X7 _
f(xr—1,ur_1) =x7 =Fr_,4 [-l] +fr_4
ur—i

1 B T B - T
Q(xr_1,ur_1) = const—|—§ { *Tr-1] Cr_1 [*T-1]+[Ei_i] cr-1+V(f(xp_1,ur—_1))
\

(1 \

V(xr) = const + ExgvTxT + XAV

T T T
1
V(XT) — const —+ — [AT-1] F%_lVTFT_l [AT-1] —+ [AT-1] F%_lvaT_l —+ [AT-1] F%_1Vg
2 ur—_1 ur—1

guadratic linear linear

Linear case: LQR

T T
L xp_q XT-1] [XT-1]
XT_1,U7_1) = const+— Cr_ + cr1+VI(f(xr—1,ur—
Qxr—1,ur_1) LAt] rn | X |4 Wt | et V(e uro)

T T T
L x4 T XT-1 XT—-1 T XT—-1 T
V(xt) = const + — F+7_ VyoF_ + F+7 Vot 1 + F7_ v,
(x7) 2 [ur-—1] ropTLE [ur-—1 ur—1 -1 T ur—1 =1

guadratic linear linear

T T
1 _ _ _
Q(XT—1,11T—1) = const + 5 [ET !] Qr-1 [*r-] + [*T-1] qr-1
T-1 T

Qr_1 =Cr_1 +F4_ ViFr_,

ar-1=cr_1+F;_Vrfr_1 +Fp_ vr

T
vuT_lQ(XT—la uT—l) — QUT_l,XT_le—l _|_ QUT_l,uT_luT—l + quT—l — 0

1
ur_1 = Kyp_1xp_1 + k4 Kr1=-"Qur ur , Qur_1,xr_;

_ —1
kp_1 = — ur_i,ur_; dur_;

Linear case: LQR

Backward recursion pa—— e

fort =T to 1:
Q =C,+F/'V,F,
q: = Ct + Ft Vit + F,;ngt+1

1[x 1" X x, 17
Q(Xt,ut):const+§[t} Qt[t]+[t} @

u; < arg min Q(x:, 1) = Kixy + ky

we know x1!

Forward recursion

fort=1to 1"
K; = ut,ut Qut,Xt u; = Kyx; + ki

k; = — ut,utqut Xt+1 = f(Xtaut)
Vt — thaxt + QXt,Uth -+ KgQut,Xt + KgQut,UtK

Vt — q.Xt —I_ th,utkt _|_ K?Qut _|_ K?Qut,utkt

1
V(x¢) = const + §x'{Vtxt + x!'vy

Linear case: LQR

Backward recursion

fort =1 to 1: total cost from now until end if we take u; from state x;

Qt — Ct + Ffvt_{_lFt /
q: = C¢ + FtTVt+1ft + F;'ngtJrl

1| x o X X o
aoom-em3[3 a3 (2]

w; < argmin Q(x¢, uy) = Kyxy + ky

Kt - = l._ltl,‘l_thutgxt
k; = —Qy 4, du,

Vi = Qx,x: + Qo Ko + K Quyx, +
Vi = Ox, + Qx,u ke + K{ Qu, + K{

total cost from now until end from state x;
Vixt) = Hllliﬂ Q(x¢, uy)
t

t Qut s Uy Kt

U, Ut kt

1
V(x¢) = const + §xgvtxt + x!'vy

LQR : Extensions

Linear Quadradic Regulator (LQR)

The LQR setting assumes a linear dynamical system:
ri41 = Axy + Buy,

x;: state at time ¢
us: input at time ¢
It assumes a quadratic cost function:

g(xy,ug) = &‘L';I-Q.?Jt iE u;rRut

with @Q > 0, R > 0.

For a square matrix X we have X > 0 if and only if for all vectors z we
have z' Xz > 0. Hence there is a non-zero cost for any state different from the
all-zeros state, and any input different from the all-zeros input.

LQR vs Dynamic Programming

* Value lteration
Back-up step for i+1 steps to go:

Jit1(s) = ming(s,u) +) P(s'[s,u) Ji(s)

* LQR:

S (@) = muin xTQx +u' Ru+ Z J;(z)
r'=Ax+Bu

= min [.I'TQ.I' +u' Ru+ Ji(Az + Bu)]

LQR Value Iteration (DP)

Jit1(x) muin {CBTQZU +u' Ru+ J;(Az + Bu)}

Initialize Jo(z) = = Pyx.

Ji(x) = min [xTQ:t: +u' Ru+ Jo(Azx + Bu)]
= min [ITQ.’E +u' Ru+ (Az 4+ Bu) " Py(Ax + Bu)] (1)

To find the minimum over u, we set the gradient w.r.t. u equal to zero:
Vul...] =2Ru+2B" Py(Az + Bu) =0,
hence: u= —(R+ B"'PyB)"'B'PyAz (2)
(2) into (1): Ji(z) = z' Pz

for: P, = Q4+ K, RK,+ (A+ BK,)' Py(A+ BK))
K, = —(R+B'P,B)"'B'P,A.

LQR Value Iteration (DP)

Jo(z) =z " Pyx
* |n Summary: Ti11 = Axy + Buy
g(z,u) =u'Ru+z'Qux

Ji(z) = z' P
for: P, = Q+ K| RK,+ (A+ BK,)' Py(A+ BK,)
Ki = —(R+B'P,B)"'B'PRA.

* J,(x) is quadratic, just like J,(x)

Value iteration update is the same for all times and can be done in closed form for
this particular continuous state-space system and cost!

J(z) = z' P
for: P, = Q-+ Ky RKs+ (A+ BK,)' Pi(A+ BK>)
Ky = —(R+B'PB)"'B'PA.

Value Iteration Solution to LQR

Set Py = 0.
for:=1,2,3,...
K; = —(R+B'P,_1B)"'B'"P_,A
P, = Q+K/'RK;+ (A+ BK;)"P,_i(A+ BK;)

The optimal policy for a i-step horizon is given by:
w(x) = K;x
The cost-to-go function for a i-step horizon is given by:

Ji(zx) =z ' P

* Guaranteed to converge to the infinite horizon optimal policy if and only if the dynamics (A, B) is such that
there exists a policy that can drive the state to zero.

e Often most convenient to use the steady-state K for all times.

LQR: Assumptions

. Kee|c|)I a linear system at the all-zeros state while preferring to keep the control input
small.
ri11 = Axy+ Buy
g(ze,ur) = :I?LTQ:Et + uLTRut

Extensions make it more generally applicable:

e Affine systems

Systems with stochasticity

Regulation around non-zero fixed point for non-linear systems
Penalization for change in control inputs

Linear time varying (LTV) systems

Trajectory following for non-linear systems

LQR EXT: Affine Systems

Ttyr1 — A&‘L't + B’U,t + C
g(ws, u) TIQT& + u;_fTRut

Optimal control policy remains linear, optimal cost-to-go function remains
guadratic

Two avenues to do derivation:
1. Re-derive the update, which is very similar to what we did for standard setting

2. Re-define the state as: z, = [x,; 1], then we have:

o Li41 o A C Lt B o / /
e[-8 S 2 oo

LQR EXT: Stochastic Systems

rir1 = Axy+ Buy +wy
T T
g(ze,uy) =z, Quy + u, Ruy
we,t =0,1,...are zero mean and independent

Exercise: work through similar derivation as we did for the deterministic case, but
which will now have expectations.

Results
* Same optimal control policy

* Cost-to-go function is almost identical: has one additional term which depends on
the variance in the noise (and which cannot be influenced by the choice of

control inputs)

LQR EXT: Non-Linear Systems

Non-Linear System: Tyl = f(:I:t,, ut)

We can keep the system at the state x* iff
Ju*s.t. z" = f(z™,u")

Linearizing the dynamics around x* gives:

v & F(a"u) + S (@ ut) (o —)+ () (e —)

\ J
! |

A B

Ty — " =~ A(xy — ™) + B(uy — u™)

— — vk — ¥k .
Let z, = x, — x*, let v,= u, — u*, then:
Zi11 = Az + By, cost = z, sz+vt Ruv,
vw=Kzp=u—u =K(z;—2")=u =u" + K(x; —2")

LQR Ext: Penalize for Change in Control Inputs

r;1 = Az + Buy

e Standard
g(ze,u) = IQt+uIRUt

 When run in this format on real systems: often high frequency control inputs get
generated. Typically highly undesirable and results in poor control performance.

e Why?

* Solution: frequency shaping of the cost function. Can be done by augmenting the system
with a filter and then the filter output can be used in the quadratic cost function. (See,
e.g., Anderson and Moore.)

* Simple special case which works well in practice: penalize for change in control inputs.
* How ??

LQR Ext: Penalize for Change in Control Inputs

r;1 = Az + Buy

e Standard
g(xe,up) = :I:iTth +HIR‘I~$¢

How to incorporate the change in controls into the cost/reward function?

* Soln. method A: explicitly incorporate into the state by augmenting the state with
the past control input vector, and the difference between the last two control
input vectors.

* Soln. method B: change of control input variables.

LQR Ext: Penalize for Change in Control Inputs

Tiy1 = Axy+ By

* Standard
g(ze,u)) = z) Quy + u, Ruy

Introducing change in controls Au

Tt41 . A B Tt B ’
T N e R e

{ J (J \ J \ J\ J
! 1 I | |

cost = —(2' T Q2" + Au" R Au) Q = [(6)2 (1)%]

R’ = penalty for change in controls
[If R’=0, then “equivalent” to standard LQR.]

LQR Ext: Linear Time Varying Systems (LTV)

Tiy1 = Az + By
T T
9($taut) N Qi + Uy Riuy
Set PU = 0.
forte=1,2,3,...
K, = —(Ryg—i+ BI—;_iPi—lBH—i)_lBI—I;—iPé—lAH—i
P = Qu-i+ Kg‘,TRH—t'Kz' + (Ag—; + BH—’iK-'i)TPi—l(AH—i + By K;)

The optimal policy for a i-step horizon is given by:
m(x) = Kz
The cost-to-go function for a i-step horizon is given by:

Ji(z) =z ' Pax.

LQR Ext:
Trajectory Following for Non-Linear Systems

A state sequence x,*, x,*, ..., x,* is a feasible target trajectory if and only if

Jug,ui, ... uy_ 2 Ve {0,1,...,H -1} : x7 = f(zf,u})

 Problem Statement
H—1

Milug,us,..up—1 Sopmo (Tt = f) Q(@e — af) + (we — uf) ' R(ur — uf)

S.t. Tt41 — f(:zrt,ut)

* Transform into Linear Time Varying System
of of

Tep1 = f(y,uy) + 5= (@, ug)(2e — o7) + = (27, uy) (ue — uy)
\():1, | \E)u, |

At Bt
Tyl — .17;:_1 ~ At(l’t = -T;k) + Bt(ut — U;‘k)

LQR Ext:
Trajectory Following for Non-Linear Systems

e Transform into Linear Time Varying System
Tev1 ~ fxy,uy) + 0_(o) (T — @) + 8_,(1'}?“1)(“# — uy)
\ - J \ “ J
Y
At Bt
Tip1 — Tprq = Ae(ze — x7) + Bi(ue — ug)

Now we can run the standard LQR back-up iterations.
Resulting policy at i time-steps from the end:

, by * — I ok
ug—; —uwy_; = Ki(xg—i —x3_;)

The target trajectory need not be feasible to apply this technique, however, if it
is infeasible then there will an offset term in the dynamics:

Tig1 — Tiq = f(@e,ur) — x5 + Ae(ze — 7)) + Be(ug — uy)

LQR for Stochastic and Nonlinear Systems

General Optimal Control

 What about

U)o UH

H
min Z g(ﬂft, Ut)
t=0

Stochastic dynamics

|+
Xt41 ~ P(Xet1|Xt, ug)

p(Xit1|xe,) =N (Ft [Xt] ‘|‘ft72t)

Uy

Solution: choose actions according to u; = K;x; + k;
x; ~ p(X¢), no longer deterministic, but p(x;) is Gaussian

no change to algorithm! can ignore ¥; due to symmetry of Gaussians
(checking this is left as an exercise; hint: the expectation of a quadratic under
a Gaussian has an analytic solution)

The stochastic closed-loop case

form of 77
T
p(s1,ai,...,s7,ar) = p(s1) HW(at|St)P(St+1|Staat) _ _ .
P time-varying linear
KtSt -+ kt

T =argmax F ., [Z r(st, at)]
t

Nonlinear case: DDP/iterative LQR

Linear-quadratic assumptions:

Can we approximate a nonlinear system as a linear-quadratic system?

f(Xt?ut) ~ f(),\(ta ﬁt) + th,utf(j\(h ﬁt) [T]

Ut—ﬁt

. . 2T
A . X; — X 1
c(x¢, up) & C(Xtaut)+VXt,UtC(Xtaut) [uz o ﬁi]"‘2 [.] v?{t,ut

Nonlinear case: DDP/iterative LQR

f(Xt?ut) ~ f(),\(ta ﬁt) + th,utf(j\(h ﬁt) [T]

Ut—ﬁt

~ T
A A A A X _X 1 X _X A A X _X
c(Xe,ug) ~ (Xe, W)+ Vi, u, ¢(Xe, Uy) [b]+2 [b] Vi, u ¢k, 0r) [b

ut_ﬁt

_ 5%y] 1 6%, |7~ [6%

f(éXt, 51115) = Ft (51175 C((SX{;, 5ut) — 5 51115 _(Yj_t} 5ut
-

vxtjut f(},\{t? ﬁt) Vit,utc(f(t? ﬁt)

(SXt — Xt — }A(t

5111; = U¢ —flt

Now we can run LQR with dynamics f, cost ¢, state dx;, and action Ju,

Nonlinear case: DDP/iterative LQR

Iterative LQR (simplified pseudocode)

until convergence:
Ft — vxt,ut f(f(ta ﬁt)
Ct = th,utc(fct, ﬁt)
Ct = vit,utc(f(ta ﬁt)
Run LQR backward pass on state 0x; = Xx; — X; and action du; = u; — Uy

Run forward pass with real nonlinear dynamics and u; = K;(x; —x;)+k;+ 1,

Update x; and 0; based on states and actions in forward pass

Nonlinear case: DDP/iterative LQR

Why does this work?

Compare to Newton’s method for computing miny g(x):

until convergence:
g = Vxg(X)
H = V3g(x)
X 4— arg min %(X ~3)THx-%) + gl (x— %)

X

[terative LQR (iLQR) is the same idea: locally approximate a complex nonlinear
function via Taylor expansion

In fact, iLQR is an approximation of Newton’s method for solving

min c¢(x1,u1) + c(f(x1,uy),u2) + - +c(f(f(...)...),ur)

ui,..., U

Nonlinear case: DDP/iterative LQR

In fact, iLQR is an approximation of Newton’s method for solving

min c(xq,uy) + c(f(x1,uy),us) +---+c(f(f(...)...),ur)

ui,...,ur

To get Newton’s method, need to use second order dynamics approximation:

f(xe,up) = f(Xe, 0g)+ Vi, u, f(Xe, 0g) [o]Jr% (v’z‘t’“tf(it’ﬁt)- [o]) [s]

5ut 511,5 61115

differential dynamic programming (DDP)

General Optimal Control
Iterative LQR: Practical Concerns

* Fis non-linear hence this is a Non-Convex Optimization Problem.

* If giis non-convex, then LQ could fail to have Positive-Definite Cost Matrices.

* Practical Fix: if Q,and R,are not PD, then

* Increase penalty of deviating from the current state and control (x,, u,), until resulting Q,
and R, are Positive definite.

General Optimal Control
Differential Dynamic Programming

Often loosely referred to as

Details:
: Linearize dynamics and 2"9 order Taylor expansion of Costs

: Directly perform 2" order Taylor expansion from the Bellman backup
equation

* This retains a term which is otherwise discarded in Iterative LQR approach.
* It’s a quadratic term in the Dynamics Model
e So even if the cost is convex, resulting LQ problem can be non-convex.

Nonlinear case: DDP/iterative LQR

1
X 4— arg min i(x —3)TH(x - %)+ g’ (x — %)

why is this a bad idea?

until convergence:

Ft — vxt,utf(f(t; ﬁt)

c; = Vx, u, (X, y) Seale}-l over « |
until improvement achieved
2
C:=V

Xt,U¢

C()A(t, lAlt)

Run LQR backward pass on state dx; = x; — X; and action ofi; = u; — Uy

D YU R [B AU Al A SN 1 1. T

A UULLLL LWL VYV LUL UL J:quu YV LULL LJI.‘E - L"E \J\.'E J“E} | ...‘-E | M‘E
Run forward pass with u; = Ky (x; — X;) + ak; + 0y

Update x; and 0; based on states and actions in forward pass

General Optimal Control

e Does it work?
Need not converge as formulated!

: the optimal policy for the LQ approximation might end up not staying close to
the sequence of points around which the LQ approximation was computed by Taylor
expansion

. in each iteration, adjust the cost function so this is the case, i.e., use the cost
function

(1 — @)g(@e,us) + al||lze — =713+ lue — uf”||2)

* Assuming g is bounded, for a close enough to one, the 2nd term will dominate and
ensure the linearizations are good approximations around the solution trajectory found
by LQR.

l.e., the extra term acts like a trust region

General Optimal Control
Differential Dynamic Programming

At convergence, in both iLQR and DDP, we end up with the linearizations around
the (state, input) trajectory

In Practice: the system could not be in this trajectory due to perturbations or initial
state deviations or incorrect dynamics model or some other noise factor.

Solution: When asked to generate control input u, we could re-solve the control
problem using iLQR or DDP over the time steps t through H.

Replanning entire trajectory is often computationally impractical.
Hence replan over horizon H — also known as

 This requires a cost-to-go J©" which accounts for all future costs.
* This can be used from a previous offline iLQR or DDP run.

Case Study and Additional Readings

Case study: nonlinear model-predictive control

Synthesis and Stabilization of Complex Behaviors through
Online Trajectory Optimization

Yuval Tassa, Tom Erez and Emanuel Todorov
University of Washington

every time step:
observe the state x;

, . t+T
use iLQR to plan uy, ..., ur to minimize Z;:t c(xX¢r, Uy)

execute action uy, discard wsyq, ..., Wyt

Case study: nonlinear model-predictive control

Synthesis of Complex Behaviors
with
Online Trajectory Optimization

Yuval Tassa, Tom Erez & Emo Todorov

IEEE International Conference
on lmelligvnl Robots and Systems
2012

Additional reading

Mayne, Jacobson. (1970). Differential dynamic programming.
Original differential dynamic programming algorithm.

Tassa, Erez, Todorov. (2012). Synthesis and Stabilization of Complex Behaviors through Online Trajectory Optimization.

Practical guide for implementing non-linear iterative LQR.

Levine, Abbeel. (2014). Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics.

Probabilistic formulation and trust region alternative to deterministic line search.

Additional Reading Material:
Videos: Steve Burton:

* Linear Quadratic Regulator (LQR) Control for the Inverted Pendulum on a Cart

* Linear Quadratic Gaussian

Other Notes:
* Underactuated Robotics by Russ Tedrake
* http://underactuated.mit.edu/acrobot.html#sectionl
* LQR Note/Cheatsheet by Somil Bansal

https://www.youtube.com/watch?v=1_UobILf3cc&list=PLMrJAkhIeNNR20Mz-VpzgfQs5zrYi085m&index=14
https://www.youtube.com/watch?v=H4_hFazBGxU
http://underactuated.mit.edu/index.html
http://people.eecs.berkeley.edu/~somil/Papers/lqrlecture.pdf
http://people.eecs.berkeley.edu/~somil/Papers/lqrlecture.pdf

Acknowledgements

Slides adapted from

CS 287 UC Berkeley
Pieter Abbeel

CS 285 UC Berkeley
Sergey Levine

CSC 498 Univ of Toronto
Animesh Garg

