
CS 8803
Deep Reinforcement Learning

Lec 9: Optimal Control & Planning
Fall 2024

Animesh Garg

Slides from Sergey Levine

Today’s Lecture

1. Introduction to model-based reinforcement learning

2. What if we know the dynamics? How can we make decisions?

3. Stochastic optimization methods

4. Monte Carlo tree search (MCTS)

5. Trajectory optimization

• Goals:
• Understand how we can perform planning with known dynamics models in

discrete and continuous spaces

Recap: the reinforcement learning objective

Recap: model-free reinforcement learning

assume this is unknown

don’t even attempt to learn it

What if we knew the transition dynamics?

• Often we do know the dynamics
1. Games (e.g., Atari games, chess, Go)

2. Easily modeled systems (e.g., navigating a car)

3. Simulated environments (e.g., simulated robots, video games)

• Often we can learn the dynamics
1. System identification – fit unknown parameters of a known model

2. Learning – fit a general-purpose model to observed transition data

Does knowing the dynamics make things easier?

Often, yes!

Model-based reinforcement learning

1. Model-based reinforcement learning: learn the transition dynamics,
then figure out how to choose actions

2. Today: how can we make decisions if we know the dynamics?
a. How can we choose actions under perfect knowledge of the system dynamics?

b. Optimal control, trajectory optimization, planning

3. Next week: how can we learn unknown dynamics?

4. How can we then also learn policies? (e.g. by imitating optimal control)

system dynamics

policy

The objective

1. run away

2. ignore

3. pet

The deterministic case

The stochastic open-loop case

why is this suboptimal?

Aside: terminology

what is this “loop”?

closed-loop open-loop

only sent at t = 1,
then it’s one-way!

The stochastic closed-loop case

(more on this later)

Open-Loop Planning

But for now, open-loop planning

Stochastic optimization

simplest method: guess & check “random shooting method”

Cross-entropy method (CEM)

can we do better?

typically use Gaussian
distribution

see also: CMA-ES (sort of like
CEM with momentum)

What’s the problem?

1. Very harsh dimensionality limit

2. Only open-loop planning

What’s the upside?

1. Very fast if parallelized

2. Extremely simple

Discrete case: Monte Carlo tree search (MCTS)

Discrete case: Monte Carlo tree search (MCTS)

e.g., random policy

Discrete case: Monte Carlo tree search (MCTS)

+10 +15

Discrete case: Monte Carlo tree search (MCTS)

Q = 10
N = 1

Q = 12
N = 1

Discrete case: Monte Carlo tree search (MCTS)

Q = 10
N = 1

Q = 12
N = 1

Q = 10
N = 1

Q = 22
N = 2

Q = 12
N = 1

Q = 22
N = 2

Q = 8
N = 1

Q = 30
N = 3

Q = 26
N = 1

Additional reading

1. Browne, Powley, Whitehouse, Lucas, Cowling, Rohlfshagen, Tavener,
Perez, Samothrakis, Colton. (2012). A Survey of Monte Carlo Tree
Search Methods.
• Survey of MCTS methods and basic summary.

Trajectory Optimization with Derivatives

Can we use derivatives?

Shooting methods vs collocation

shooting method: optimize over actions only

Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints

Linear case: LQR

linear quadratic

Linear case: LQR

Linear case: LQR

Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

Linear case: LQR

Linear case: LQR

LQR : Extensions

Linear Quadradic Regulator (LQR)

LQR vs Dynamic Programming

• Value Iteration
Back-up step for i+1 steps to go:

• LQR:

LQR Value Iteration (DP)

LQR Value Iteration (DP)

• In Summary:

• J1(x) is quadratic, just like J0(x)

Value iteration update is the same for all times and can be done in closed form for
this particular continuous state-space system and cost!

Value Iteration Solution to LQR

• Guaranteed to converge to the infinite horizon optimal policy if and only if the dynamics (A, B) is such that
there exists a policy that can drive the state to zero.

• Often most convenient to use the steady-state K for all times.

LQR: Assumptions

• Keep a linear system at the all-zeros state while preferring to keep the control input
small.

Extensions make it more generally applicable:

• Affine systems

• Systems with stochasticity

• Regulation around non-zero fixed point for non-linear systems

• Penalization for change in control inputs

• Linear time varying (LTV) systems

• Trajectory following for non-linear systems

LQR EXT: Affine Systems

Optimal control policy remains linear, optimal cost-to-go function remains
quadratic

Two avenues to do derivation:

1. Re-derive the update, which is very similar to what we did for standard setting

2. Re-define the state as: zt = [xt; 1], then we have:

LQR EXT: Stochastic Systems

Exercise: work through similar derivation as we did for the deterministic case, but
which will now have expectations.

Results

• Same optimal control policy

• Cost-to-go function is almost identical: has one additional term which depends on
the variance in the noise (and which cannot be influenced by the choice of
control inputs)

LQR EXT: Non-Linear Systems

Non-Linear System:

We can keep the system at the state x* iff

Linearizing the dynamics around x* gives:

Let zt = xt – x* , let vt = ut – u*, then:

LQR Ext: Penalize for Change in Control Inputs

• Standard

• When run in this format on real systems: often high frequency control inputs get
generated. Typically highly undesirable and results in poor control performance.

• Why?

• Solution: frequency shaping of the cost function. Can be done by augmenting the system
with a filter and then the filter output can be used in the quadratic cost function. (See,
e.g., Anderson and Moore.)

• Simple special case which works well in practice: penalize for change in control inputs.

• How ??

LQR Ext: Penalize for Change in Control Inputs

• Standard

How to incorporate the change in controls into the cost/reward function?

• Soln. method A: explicitly incorporate into the state by augmenting the state with
the past control input vector, and the difference between the last two control
input vectors.

• Soln. method B: change of control input variables.

LQR Ext: Penalize for Change in Control Inputs

• Standard

Introducing change in controls Δu

LQR Ext: Linear Time Varying Systems (LTV)

LQR Ext:
Trajectory Following for Non-Linear Systems

• A state sequence x0*, x1*, …, xH* is a feasible target trajectory if and only if

• Problem Statement

• Transform into Linear Time Varying System

LQR Ext:
Trajectory Following for Non-Linear Systems

• Transform into Linear Time Varying System

LQR for Stochastic and Nonlinear Systems

General Optimal Control

• What about

Stochastic dynamics

The stochastic closed-loop case

Nonlinear case: DDP/iterative LQR

Nonlinear case: DDP/iterative LQR

Nonlinear case: DDP/iterative LQR

Nonlinear case: DDP/iterative LQR

Nonlinear case: DDP/iterative LQR

General Optimal Control
Iterative LQR: Practical Concerns

• F is non-linear hence this is a Non-Convex Optimization Problem.
• Can get Stuck in local minima.

• Good initialization matters

• If g is non-convex, then LQ could fail to have Positive-Definite Cost Matrices.
• Practical Fix: if Qt and Rt are not PD, then

• Increase penalty of deviating from the current state and control (xt, ut), until resulting Qt

and Rt are Positive definite.

General Optimal Control
Differential Dynamic Programming

Often loosely referred to as Iterative LQR Procedure

Details:

• Don’t: Linearize dynamics and 2nd order Taylor expansion of Costs

• Do’s: Directly perform 2nd order Taylor expansion from the Bellman backup
equation

• This retains a term which is otherwise discarded in Iterative LQR approach.
• It’s a quadratic term in the Dynamics Model
• So even if the cost is convex, resulting LQ problem can be non-convex.

Nonlinear case: DDP/iterative LQR

General Optimal Control

• Does it work?
Need not converge as formulated!

• Reason: the optimal policy for the LQ approximation might end up not staying close to
the sequence of points around which the LQ approximation was computed by Taylor
expansion

• Solution: in each iteration, adjust the cost function so this is the case, i.e., use the cost
function

• Assuming g is bounded, for α close enough to one, the 2nd term will dominate and
ensure the linearizations are good approximations around the solution trajectory found
by LQR.
I.e., the extra term acts like a trust region

General Optimal Control
Differential Dynamic Programming
At convergence, in both iLQR and DDP, we end up with the linearizations around
the (state, input) trajectory

In Practice: the system could not be in this trajectory due to perturbations or initial
state deviations or incorrect dynamics model or some other noise factor.

Solution: When asked to generate control input ut we could re-solve the control
problem using iLQR or DDP over the time steps t through H.

Replanning entire trajectory is often computationally impractical.
Hence replan over horizon H – also known as Receding Horizon Control

• This requires a cost-to-go Jt+h which accounts for all future costs.

• This can be used from a previous offline iLQR or DDP run.

Case Study and Additional Readings

Case study: nonlinear model-predictive control

Case study: nonlinear model-predictive control

Additional reading

Mayne, Jacobson. (1970). Differential dynamic programming.

Original differential dynamic programming algorithm.

Tassa, Erez, Todorov. (2012). Synthesis and Stabilization of Complex Behaviors through Online Trajectory Optimization.

Practical guide for implementing non-linear iterative LQR.

Levine, Abbeel. (2014). Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics.

Probabilistic formulation and trust region alternative to deterministic line search.

Additional Reading Material:
Videos: Steve Burton:

• Linear Quadratic Regulator (LQR) Control for the Inverted Pendulum on a Cart

• Linear Quadratic Gaussian

Other Notes:

• Underactuated Robotics by Russ Tedrake

• http://underactuated.mit.edu/acrobot.html#section1

• LQR Note/Cheatsheet by Somil Bansal

https://www.youtube.com/watch?v=1_UobILf3cc&list=PLMrJAkhIeNNR20Mz-VpzgfQs5zrYi085m&index=14
https://www.youtube.com/watch?v=H4_hFazBGxU
http://underactuated.mit.edu/index.html
http://people.eecs.berkeley.edu/~somil/Papers/lqrlecture.pdf
http://people.eecs.berkeley.edu/~somil/Papers/lqrlecture.pdf

Acknowledgements

Slides adapted from

CS 287 UC Berkeley
Pieter Abbeel

CS 285 UC Berkeley
Sergey Levine

CSC 498 Univ of Toronto
Animesh Garg

