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Recap: policy gradients

generate 
samples (i.e. 

run the policy)

fit a model to
estimate return

improve the 
policy

“reward to go”

can also use function approximation here



Why does policy gradient work?

generate 
samples (i.e. 

run the policy)

fit a model to
estimate return

improve the 
policy

look familiar?



Policy gradient as policy iteration



Policy gradient as policy iteration
importance sampling



Ignoring distribution mismatch?

why do we want this to be true?

is it true? and when?

?



Bounding the Distribution Change



Ignoring distribution mismatch?
?

why do we want this to be true?

is it true? and when?



Bounding the distribution change

seem familiar?

not a great bound, but a bound!



Bounding the distribution change

Proof based on: Schulman, Levine, Moritz, Jordan, Abbeel. “TrustRegion Policy Optimization.”



Bounding the objective value



Where are we at so far?



Policy Gradients with Constraints



A more convenient bound

KL divergence has some very convenient properties that 
make it much easier to approximate!



How do we optimize the objective?



How do we enforce the constraint?

can do this incompletely (for a few grad steps)



Natural Gradient



How (else) do we optimize the objective?

Use first order Taylor approximation for objective (a.k.a., linearization)



How do we optimize the objective?

(see policy gradient lecture for derivation)

exactly the normal policy gradient!



Can we just use the gradient then?



Can we just use the gradient then?

not the same!

second order Taylor expansion



Can we just use the gradient then?

natural gradient



Is this even a problem in practice?

Essentially the same problem as this:

(figure from Peters & Schaal 2008)

(image from Peters & Schaal 2008)



Practical methods and notes

• Natural policy gradient
• Generally a good choice to stabilize policy gradient training

• See this paper for details:
• Peters, Schaal. Reinforcement learning of motor skills with policy gradients.

• Practical implementation: requires efficient Fisher-vector products, a bit 
non-trivial to do without computing the full matrix
• See: Schulman et al. Trust region policy optimization

• Trust region policy optimization

• Just use the IS objective directly
• Use regularization to stay close to old policy

• See: Proximal policy optimization



generate 
samples (i.e. 

run the policy)

fit a model to
estimate return

improve the
policy

Review

• Policy gradient = policy iteration

• Optimize advantage under new policy state 
distribution

• Using old policy state distribution optimizes a 
bound, if the policies are close enough

• Results in constrained optimization problem

• First order approximation to objective = gradient 
ascent

• Regular gradient ascent has the wrong constraint, 
use natural gradient

• Practical algorithms

• Natural policy gradient

• Trust region policy optimization

• Proximal Policy Optimization
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