
CS 8803
Deep Reinforcement Learning

Lec 7: Deep RL with Q-Function
Fall 2024

Animesh Garg

Slides from Sergey Levine



Recap: Q-learning

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy



Q-learning is not gradient descent!

What’s wrong?

no gradient through 
target value



Correlated samples in online Q-learning

- sequential states are strongly correlated

- target value is always changing

synchronized parallel Q-learning asynchronous parallel Q-learning



Another solution: replay buffers

special case with K = 1, and one gradient step

any policy will work! (with broad support)

just load data from a buffer here

still use one gradient step

dataset of transitions

Fitted Q-iteration



Another solution: replay buffers

but where does the data come from?

need to periodically feed the replay buffer…

dataset of transitions
(“replay buffer”)

off-policy 
Q-learning

+ samples are no longer correlated

+ multiple samples in the batch (low-variance gradient)



Putting it together

K = 1 is common, though 
larger K more efficient

dataset of transitions
(“replay buffer”)

off-policy 
Q-learning



Target Networks



What’s wrong?

Q-learning is not gradient descent!

no gradient through target value

use replay buffer

This is still a 
problem!



Q-Learning and Regression

one gradient step, moving target

perfectly well-defined, stable regression



Q-Learning with target networks

targets don’t change in inner loop!

su
p

e
rvise

d
re

gre
ssio

n



“Classic” deep Q-learning algorithm (DQN)

Mnih et al. ‘13 You’ll implement this in HW!



Alternative target network

Intuition:
get target from here no lag here

maximal lag

Feels weirdly uneven, can we always have the same lag? 

Popular alternative (similar to Polyak averaging):



A General View of Q-Learning



Fitted Q-iteration and Q-learning

just SGD



A more general view

dataset of transitions
(“replay buffer”)

target 
parameters

current 
parameters



A more general view

dataset of transitions
(“replay buffer”)

target 
parameters

current 
parameters

• Online Q-learning (last lecture): evict immediately, process 1, process 2, and process 3 all run at
the same speed

• DQN: process 1 and process 3 run at the same speed, process 2 is slow

• Fitted Q-iteration: process 3 in the inner loop of process 2, which is in the inner loop of process 1



Improving Q-Learning



Are the Q-values accurate?

As predicted Q 
increases, so 
does the return

Breakout Pong



Are the Q-values accurate?



Overestimation in Q-learning



Double Q-learning



Double Q-learning in practice



Multi-step returns



Q-learning with N-step returns

+ less biased target values when Q-values are inaccurate

+ typically faster learning, especially early on

- only actually correct when learning on-policy

• ignore the problem
• often works very well

• cut the trace – dynamically choose N to get only on-policy 
data
• works well when data mostly on-policy, and action space is small

• importance sampling

For more details, see: “Safe and efficient off-policy reinforcement learning.” Munos et al. ‘16



Q-Learning with Continuous Actions



What’s the problem with continuous actions?

this max

this max
particularly problematic (inner loop of training)

How do we perform the max? 

Option 1: optimization

• gradient based optimization (e.g., SGD) a bit slow 
in the inner loop

• action space typically low-dimensional – what 
about stochastic optimization?

Q-learning with continuous actions



Q-learning with stochastic optimization

Simple solution:
+ dead simple

+ efficiently parallelizable

- not very accurate

but… do we care? How good does the target need to be anyway?

More accurate solution:

• cross-entropy method (CEM)
• simple iterative stochastic optimization

• CMA-ES
• substantially less simple iterative stochastic optimization

works OK, for up to about 40 
dimensions



Easily maximizable Q-functions

Option 2: use function class that is easy to optimize

Gu, Lillicrap, Sutskever, L., ICML 2016

NAF: Normalized Advantage Functions
+ no change to algorithm

+ just as efficient as Q-learning

- loses representational power



Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG (Lillicrap et al., ICLR 2016)
“deterministic” actor-critic 
(really approximate Q-learning)



Q-learning with continuous actions

Option 3: learn an approximate maximizer



Implementation Tips and Examples



Simple practical tips for Q-learning

• Q-learning takes some care to stabilize
• Test on easy, reliable tasks first, make sure your implementation is correct

• Large replay buffers help improve stability
• Looks more like fitted Q-iteration

• It takes time, be patient – might be no better than random for a 
while

• Start with high exploration (epsilon) and gradually reduce

Slide partly borrowed from J. Schulman



Advanced tips for Q-learning

• Bellman error gradients can be big; clip gradients or use Huber 
loss

• Double Q-learning helps a lot in practice, simple and no downsides

• N-step returns also help a lot, but have some downsides

• Schedule exploration (high to low) and learning rates (high to low), Adam
optimizer can help too

• Run multiple random seeds, it’s very inconsistent between runs

Slide partly borrowed from J. Schulman



Fitted Q-iteration in a latent space

“Autonomous 
reinforcement learning 
from raw visual data,”
Lange & Riedmiller ‘12

• Q-learning on top of
latent space learned
with autoencoder

• Uses fitted Q-iteration

• Extra random trees for 
function approximation
(but neural net for 
embedding)



Q-learning with convolutional networks

“Human-level control 
through deep 
reinforcement learning,”
Mnih et al. ‘13

• Q-learning with
convolutional networks

• Uses replay buffer and 
target network

• One-step backup

• One gradient step

• Can be improved a lot 
with double Q-learning 
(and other tricks)



Q-learning with continuous actions

• “Continuous control with deep 
reinforcement learning,” Lillicrap 
et al. ‘15

• Continuous actions with
maximizer network

• Uses replay buffer and target 
network (with Polyak averaging)

• One-step backup

• One gradient step per simulator 
step



Q-learning on a real robot

• “Robotic manipulation 
with deep reinforcement 
learning and …,” Gu*, 
Holly*, et al. ‘17

• Continuous actions with
NAF (quadratic in actions)

• Uses replay buffer and 
target network

• One-step backup

• Four gradient steps per 
simulator step for 
efficiency

• Parallelized across 
multiple robots



live data collection

stored data from all 
past experiments

Large-scale Q-learning with continuous actions 
(QT-Opt)

training buffers Bellman updaters

training threads

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, 
Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-
Based Robotic Manipulation Skills



Q-learning suggested readings
• Classic papers

• Watkins. (1989). Learning from delayed rewards: introduces Q-learning
• Riedmiller. (2005). Neural fitted Q-iteration: batch-mode Q-learning with neural 

networks

• Deep reinforcement learning Q-learning papers
• Lange, Riedmiller. (2010). Deep auto-encoder neural networks in reinforcement

learning: early image-based Q-learning method using autoencoders to construct 
embeddings

• Mnih et al. (2013). Human-level control through deep reinforcement learning: Q-
learning with convolutional networks for playing Atari.

• Van Hasselt, Guez, Silver. (2015). Deep reinforcement learning with double Q-learning: 
a very effective trick to improve performance of deep Q-learning.

• Lillicrap et al. (2016). Continuous control with deep reinforcement learning: 
continuous Q-learning with actor network for approximate maximization.

• Gu, Lillicrap, Stuskever, L. (2016). Continuous deep Q-learning with model-based
acceleration: continuous Q-learning with action-quadratic value functions.

• Wang, Schaul, Hessel, van Hasselt, Lanctot, de Freitas (2016). Dueling network
architectures for deep reinforcement learning: separates value and advantage 
estimation in Q-function.



Review

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy

• Q-learning in practice
• Replay buffers
• Target networks

• Generalized fitted Q-iteration

• Double Q-learning

• Multi-step Q-learning

• Q-learning with continuous 
actions
• Random sampling
• Analytic optimization
• Second “actor” network



Acknowledgements

Slides adapted from 

CS 188 UC Berkeley
Pieter Abbeel, Dan Klein et al.

CS 285 UC Berkeley
Sergey Levine

CSC 498 Univ of Toronto
Animesh Garg


	Slide 1: CS 8803 Deep Reinforcement Learning
	Slide 2: Recap: Q-learning
	Slide 3: What’s wrong?
	Slide 4: Correlated samples in online Q-learning
	Slide 5: Another solution: replay buffers
	Slide 6: Another solution: replay buffers
	Slide 7: Putting it together
	Slide 8: Target Networks
	Slide 9: What’s wrong?
	Slide 10: Q-Learning and Regression
	Slide 11: Q-Learning with target networks
	Slide 12: “Classic” deep Q-learning algorithm (DQN)
	Slide 13: Alternative target network
	Slide 14: A General View of Q-Learning
	Slide 15: Fitted Q-iteration and Q-learning
	Slide 16: A more general view
	Slide 17: A more general view
	Slide 18: Improving Q-Learning
	Slide 19
	Slide 20: Are the Q-values accurate?
	Slide 21: Overestimation in Q-learning
	Slide 22: Double Q-learning
	Slide 23: Double Q-learning in practice
	Slide 24: Multi-step returns
	Slide 25: Q-learning with N-step returns
	Slide 26: Q-Learning with Continuous Actions
	Slide 27: Q-learning with continuous actions
	Slide 28: Q-learning with stochastic optimization
	Slide 29: Easily maximizable Q-functions
	Slide 30: Q-learning with continuous actions
	Slide 31: Q-learning with continuous actions
	Slide 32: Implementation Tips and Examples
	Slide 33: Simple practical tips for Q-learning
	Slide 34: Advanced tips for Q-learning
	Slide 35: Fitted Q-iteration in a latent space
	Slide 36: Q-learning with convolutional networks
	Slide 37: Q-learning with continuous actions
	Slide 38: Q-learning on a real robot
	Slide 39: Large-scale Q-learning with continuous actions (QT-Opt) training buffers Bellman updaters
	Slide 40: Q-learning suggested readings
	Slide 41: Review
	Slide 42: Acknowledgements

