CS 8303

Deep Reinforcement Learning

Lec 7: Deep RL with Q-Function
Fall 2024

Animesh Garg

Slides from Sergey Levine

Recap: Q-learning

full fitted Q-iteration algorithm:

1. collect dataset {(s;,a;,s;,r;)} using some policy
Qs(s,a) < r(s,a) + ymaxay Qu(s’,a’)

fit a model to
ﬁ estimate return

2. set y; < 7(8i,a;) + v maxy Qy(s;,aj)
. 2
. set ¢ + argming 2 Y, Qe (si,a;) — yil|

generate
samples (i.e.
run the pollcy)

improve the
online Q) iteration algorithm: policy

1. take some action a; and observe (s;,a;,s;, ;) a = arg max, Qg4 (s, a)
2. y; = T(Suaz) + 7y MaXa Qfﬁ(i ’L)
3. ¢ ¢ — a G (si,2:)(Qu(si ;) — yi)

What's wrong?

online Q) iteration algorithm:

1. take some action a; and observe (s;,a;,s’, ;)
2. y; = T(quaaz‘)+’ymaxaf qu(ngaafg) \

these are correlated!
3. ¢+ ¢ — alZe(s;,a:)(Qu(si ai) — yi)

N

isn’t this just gradient descent? that converges, right?

Q-learning is not gradient descent!

60— 0% (51, (Qu(sis) ~ o) + 7 mavr Qu(sl, a))

no gradient through
target value

Correlated samples in online Q-learning

online Q) iteration algorithm: - sequential states are strongly correlated
@ 1. take some action a; and observe (s;,a;,s’, ;) - target value is always changing
2. o ¢ — a2 d¢ = (si,a;)(Qy(si,a;) — [r(si; a;) + v maxar Qp(s;, a3)])

PAl N e NV A Y

synchronized parallel Q-learning asynchronous parallel Q-learning

get, (s,a,s’,'r)<—l I I I

update ¢ +— BE—m_m__m

get, (s,a,s’,'r)<—l I I I

update ¢ «+— B—m__m__m

I I I I ‘

b
S

Another solution: replay buffers

online (iteration algorithm: special case with K =1, and one gradient step

1. take some action a; and observe (s;,a;,s’, ;)

2. 0 ¢ — als d¢ 2 (si,a;:)(Qg(si,a;) — [r(si; a;) + ymaxa Qy(s],aj)])

full fitted Q-iteration algorithm:

ol any policy will work! (with broad support)

£ 2. set y; < (s, a;) + v maxy Qy(s;, aj) just load data from a buffer here
X

. 1 2
3. set ¢ <— argming) Z@ Hqu(Sz'a az‘) - .YzH still use one gradient step
dataset of transitions
Fitted Q-iteration

RN

Another solution: replay buffers

(Q-learning with a replay buffer:

@ 1. sample a batch (s@-,aq;,s’- r;) from B
2. ¢ ¢ —ad; (s, a:)(Qu(si,ai) — [r(si,a;) + v maxe Qu(s),a})])

but where does the data come from?

need to periodically feed the replay buffer...

!
s,a,s’,r
(’ ¥) dataset of transitions
(“replay buffer”)

-’P T '\:\'
el e

w(als) (e.g., e-greedy)

off-policy
Q-learning

Putting it together

full Q-learning with replay buffer:

1. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B
K =1 is common, though

2. sample a batch (sz-, a;,s,,r;) from B larger K more efficient

3. qb — Qﬁ — @E'J, do (S'Laa%)(Q¢(S'wa®) - [T(Siaa’i) + Y maXy; QCﬁ(S;va;)])

dataset of transitions
(“replay buffer”)

off-policy
Q-learning

w(als) (e.g., e-greedy)

Target Networks

What's wrong?

online Q) iteration algorithm:

1. take some action a; and observe (s;,a;,s’, ;)

2. y; = (s, az-) + vy maxay Qy(s), a;) \
e e o e
3. ¢+ ¢ — alZe(s;,a:)(Qu(si ai) — yi)

use replay buffer

Q-learning is not gradient descent!

This is still a
s T N) Sy

no gradient through target value

Q-Learning and Regression

full Q-learning with replay buffer:
1. collect dataset {(s;,a;,s,;)} using some policy, add it to B

2. sample a batch (S,i, a;,s;,r;) from B

3. ¢« Cb—azz Ao = (si,a;)(Qe(si,a;) — [r(si, a;) + 7y maxa Qp(s;, aj)])

K X

one gradient step, moving target

full fitted Q-iteration algorithm:
1. collect dataset {(s;,a;,s;,r;)} using some policy
2. set y; < r(si,a;) +ymaxa Qu(s],a;)

K x) 1 9
3. set ¢ < argming 5 ZZ ||Q¢,(s@-,a¢) - Y@H

perfectly well-defined, stable regression

Q-Learning with target networks

Q-learning with replay buffer and target network:

1. save target network parameters: ¢’ < ¢
2. collect dataset {(s;,a;,s.,r;)} using some policy, add it to B
N x 3. sample a batch (ST,, a;,s;,r;) from B

K x
4§ ¢— X, Fe(siai)(Qolsi ai) — [r(si, ai) + 7 maxa Qg (s, a})])

targets don’t change in inner loop!

uoISsa.13a4 pasiniddns

“Classic” deep Q-learning algorithm (DQN)

()-learning with replay buffer and target network:
1. save target network parameters: ¢’ < ¢
2. collect dataset {(s;,a;,s},r;)} using some policy, add it to B

N><K 3. sample a batch (si,a?;,s’-,r,i) from B
X

4. ¢ ¢_@Z@ dé (sz,a@)(qu(sz,az) — [r(si,a;) + v maxqy ch’(si>a;)])

“classic” deep Q-learning algorithm:
1. take some action a; and observe (s;,a;, s, r;), add it to B
sample mini-batch {s;,a;,s’,r;} from B uniformly
compute y; = 'rj + 7 maxa Qy (8}, @) using target network Qg K =1
L PP — azj a6 = (s5,85)(Qe(sy,a;) — yj)
update ¢': copy ¢ every N steps

U o

Mnih et al. “13 You’ll implement this in HW!

Alternative target network

“classic” deep Q-learning algorithm:

> 1. take some action a; and observe (s;,a;,s;,7;), add it to B

2. sample mini-batch {s;,a;,s’,r;} from B uniformly

3. compute y; = fr'j + Y Maxy Q¢r() using target network)y
4. ¢« ¢ — OZZJ Ao = (s5,a5)(Qe(s), a5) — yj)

g

Intuition:

maximal lag
get target from here (t ~ \ no lag here
(s,a,s',7) o (s,a,s',7) o (s,a,s,r) o (s,a5s,r) ¢ (s,a5ss,r) ¢

Feels weirdly uneven, can we always have the same lag?

Popular alternative (similar to Polyak averaging):

5. update ¢': ¢ <+ 17¢' + (1 — 7)o 7 = 0.999 works well

A General View of Q-Learning

Fitted Q-iteration and Q-learning

Q-learning with replay buffer and target network: DQN: N =1, K =1
1. save target network parameters: ¢’ < ¢
2. collect M datapoints {(s;,a;,s;,r;)} using some policy, add them to B

NXK 3. sample a batch (S@-,a,,;,s’- r;) from B
X
4. ¢+ ¢ — szz do 2 (si,a;)(Qe(si,a;) — [r(ss,a;) + v maxa Qg (s;, A)])

Fitted Q-learning (written similarly as above):
1. collect M datapoints {(s;, a;,s., ;) } using some policy, add them to B

2. save target network parameters: ¢’ < ¢

N x 3. sample a batch (sz, a;,s;,r;) from B
KX . just SGD
4. ¢+ ¢ —« Zz db (S’La a?/)(Q'fb(S%a al) - [T(S?ﬁa ai) + 7Y MaXa' Q¢’ (Sia az)])

A more general view

QQ-learning with replay buffer and target network:
> 1. save target network parameters: ¢’ < ¢

’E . collect M datapoints {(s;,a;,s;,r;)} using some policy, add them to B
o @

. sample a batch (S@-, a;,s;,r;) from B

4. ¢ + @ — O{Zz “do (81932)(Q¢(S%a aZ) _ [T(S’ia ai) + 7Y MaXa’ Q¢’ (s;,a;)])

@ process 2

process 1: data collection SRR target update

parameters

/
(s,a,8',7) . ¢ ¢
dataset of transitions
(“replay buffer”) process 3
" .\:\‘0

\\

m(als) (e.g., e-greedy)

evict old data

A more general view
process 1: data collection @ process 2

parameters target update

parameters

(s,a,8,7) . ¢ ¢
dataset of transitions
(“replay buffer”)
.f .\. .

&

m(als) (e.g., e-greedy)

evict old data

* Online Q-learning (last lecture): evict immediately, process 1, process 2, and process 3 all run at
the same speed

 DQN: process 1 and process 3 run at the same speed, process 2 is slow

* Fitted Q-iteration: process 3 in the inner loop of process 2, which is in the inner loop of process 1

Improving Q-Learning

Are the Q-values accurate?

Value (V)

aalssBupnuER

Average Reward on Breakout

°
3250 '81500 Average Reward on Seaquest I A Average Q on Breakout ; e 9 Average Q on Seaquest AS p red I Cted Q
2 81600 C 3s N c s
g 400 ||M : s Sl Y
o ARE .
3 It Jl v’ il] giooo } £ 2 £
Boof [T TR B I 3 -k Increases, SO
F i | S au «d"f | y | .,l 7 8 o ’
§ 50 W g ol 4 f M il g 1 / g 2f /
5 ! 5 200 .u‘q/] $os 1/
¥ 95770 20 30 40 50 60 70 80 90 100 . "0 10 20 30 40 50 60 70 80 90 100 %% 10 20 30 40 50 60 70 80 90 100 %0 10 20 30 40 50 60 70 80 90 100 does the return
Training Epochs Training Epochs Training Epochs Training Epochs

1

e

Pong

vvvvvvvvvvvvvvvvvvvvvvvv
© 5 10 5 20 25 W 35 4 45 W 55 @ 65 0 75 W 85 W 05 100 105 110 1S

Frame ¥

.5

o

O

Action-Values (Q)

Breakout

Are the Q-values accurate?

| ~Space Invaders ~ Time Pilot - Zaxxon
a 20 - 2.5 -
% 8 DQN estimate
'.%' 15 -
O 15 4 = ;
Q ouble DQN estimate
= 10 ; 1.0 2 |
] ouble DQN true value
> 0 e DQN true value

0 50 100 150 200 O 50 100 150 200 O 50 100 150 200 O 50 100 150 200
Training steps (in millions)

Overestimation in Q-learning

target value y; = r; + 7 MaXa! oFY (53'9 a;-)

N

this last term is the problem

imagine we have two random variables: X7 and X5
Elmax (X, X2)] > max(FE[X4], F[X3])

Q4 (s’,a’) is not perfect — it looks “noisy”

hence maxa' Qg (s',a’) overestimates the next value!

note that maxy Qg (s',a’) = Qu (', argmaxy Qg (s',a’))

value also comes from)y action selected according to Qg

Double Q-learning

Elmax(X7, Xo)] > max(E|[X;], E[X3])

note that maxy Qu (s',a") = Qu (', arg maxy Qu (s',a’))

value also comes from)y action selected according to @)y

N /

if the noise in these is decorrelated, the problem goes away!
idea: don’t use the same network to choose the action and evaluate value!

“double” Q-learning: use two networks:

Q¢5A (87 a) <+ 7Q¢B (SIJ arg H?X QQbA (5,7 al))

Qo (s,a) =7 +7Q0p, (8 argmax Qy, (s',a'))

AN /

if the two QQ’s are noisy in different ways, there is no problem

Double Q-learning in practice

where to get two Q-functions?

just use the current and target networks!

standard Q-learning: y = r + 7Qyu (s, arg max, Q. (s’,a’
¢ ¢

double Q-learning: y = r + vQ4 (s, arg maXala a'))

just use current network (not target network) to evaluate action

still use target network to evaluate value!

Multi-step returns

(Q-learning target: Yjt =Tt T yMaXa, . qu, (Sj,t+1, aj,t+1)

7

these are the only values that matter if (), is bad! these values are important if Qg is good

' ?
where does the signal come from! Q-learning does this: max bias, min variance

1e? L ’
remembel’ thlS ! Actororiia: VoJ(0) ~ — Z ZVH log 7o (ai.¢|si & (r(s,;,.a,;,) + YV (8i042) } V. (Si./)>
N i=1 t=1
- not unbiased (if the critic is not perfect)
i -
Policy gradient: V,.J(0 Vo log mg(a; ¢|sit) ((Z v "t (sies ai.l’)) = b)
i=1 t=1 t/=t

- higher variance (because single-sample estimate)

can we construct multi-step targets, like in actor-critic?

L t+N—1 ¢ N
Yit =2y YT e+ maxa, .,y Qo (Sj 4N, 44 N)

N-step return estimator

Q-learning with N-step returns

_ t+N—-1 ¢/ N
Yjt = Qip—¢ Y Tie Ty MaXa; .,y Q¢ (Sj,t4+N, Q514 N)

.. : Tl |
this is supposed to estimate ¢/ (Sﬂst’ aﬂvt) for m - only actually correct when learning on-policy

B 1 if a; = arg max,, Q¢(St= at) Why?
m(ase) = { 0 otherwise

we need transitions s;,a; 4,8, 41 to come from 7 for t' —t < N — 1

(not an issue when N = 1)

how to fix? * ignore the problem
e often works very well

. gut the trace — dynamically choose N to get only on-policy
ata

* works well when data mostly on-policy, and action space is small
e importance sampling

For more details, see: “Safe and efficient off-policy reinforcement learning.” Munos et al. ‘16

Q-Learning with Continuous Actions

Q-learning with continuous actions

What’s the problem with continuous actions?

1 if a; =(arg max, S¢, a this max
w(ads:) = { Qg Qolo)

0 otherwisé

target value y; = r; + (maxy Qg (s’,a’;) this max
° v ’ a; O\ gy particularly problematic (inner loop of training)

How do we perform the max?
Option 1: optimization
e gradient based optimization (e.g., SGD) a bit slow

in the inner loop

e action space typically low-dimensional — what
about stochastic optimization?

Q-learning with stochastic optimization

Simple solution:

mSXQ(S7 a) ~ nax {Q(Sa al)a SR Q(Sa aN)}
(ay,...,an) sampled from some distribution (e.g., uniform) - not very accurate

but... do we care? How good does the target need to be anyway?

More accurate solution:

works OK, for up to about 40
* cross-entropy method (CEM) dimensions

* simple iterative stochastic optimization
* CMA-ES

» substantially less simple iterative stochastic optimization

Easily maximizable Q-functions

Option 2: use function class that is easy to optimize

1 — |—> 7
Qu(sa) = —5(a— o) Pols)a—us(s) +Vals) S I P il Q’
—> |

NAF: Normalized Advantage Functions

- loses representational power
arg max Qs(s,a) = pg(s) max Qe(s,a) = Vy(s)

Gu, Lillicrap, Sutskever, L., ICML 2016

Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG (Lillicrap et al., ICLR 2016) deterministic” actor-critic

(really approximate Q-learning)
maxa Q¢ (8,a) = Qy(s,argmax, Q4(s,a))

idea: train another network pg(s) such that pg(s) ~ argmax, Q4(s, a)

dQ¢ B da qub

how? just solve 6 < arg max S, 1y (s = %9
: gmaxy Qo(s, 1o s)) 9~ df da

new target y; = 7; +vQg (s}, no(s})) = rj + 7Qy (s}, arg maxa Qg (s}, %))

Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG:

take some action a; and observe (s;,a;, s}, r;), add it to B

sample mini-batch {s;,a;,s’,r;} from B uniformly

compute y; = 7’3 + Q¢ (S}, per (s)) using target nets Qg and pig:
L P9 — 0523 b = (s5,25)(Qo(ss,a5) — yj)

0 0+ 8%, G (s) et (55, 1(s5)

update ¢’ and 6’ (e.g., Polyak averaging)

S

Implementation Tips and Examples

Simple practical tips for Q-learning

* Q-learning takes some care to stabilize
* Test on easy, reliable tasks first, make sure your implementation is correct

e [Breakout T 400000 Video Pinball 250 el

S 200

320000

240000

160000

800004 /
il

[150
M (A 100
s 50

0

Figure: From T. Schaul, J. Quan, |. Antonoglou, and D. Silver. “Prioritized experience
replay”. arXiv preprint arXiv:1511.05952 (2015), Figure 7

* Large replay buffers help improve stability
* Looks more like fitted Q-iteration

* |t takes time, be patient — might be no better than random for a
while

e Start with high exploration (epsilon) and gradually reduce

Slide partly borrowed from J. Schulman

Advanced tips for Q-learning

* Bellman error gradients can be big; clip gradients or use Huber
loss

L(x) = {x2/2 if | x| <96

§|x| — 8%/2 otherwise

* Double Q-learning helps a lot in practice, simple and no downsides
* N-step returns also help a lot, but have some downsides

* Schedule exploration (high to low) and learning rates (high to low), Adam
optimizer can help too

* Run multiple random seeds, it’s very inconsistent between runs

Slide partly borrowed from J. Schulman

Fitted Q-iteration in a latent space

target: reconstruction Deep Autoencoder
“Autonomous [‘
reinforcement learning

from raw visual data,”
Lange & Riedmiller ‘12

gradient descent

* Q-learning on top of
latent space learned
with autoencoder

* Uses fitted Q-iteration

feature space

low-dimensional

action a

e Extra random trees for
function approximation
(but neural net for
embedding)

improved by
Reinforcement
Learning

%f’)

maps feature
vectors to
actions

Q-learning with convolutional networks

“Human-level control
through deep
reinforcement learning,”

Mnih et al. ‘13
* Q-learning with
convolutional networks

_.

WO MINUTE

PAPERS

* Uses replay buffer and

target network ATARI"
" One-step backup GOOGLE DEEPMIND'S DEEP Q-LEARNING
* One gradient step SUPERHUMAN ATARI G AY

* Can be improved a lot
with double Q-learning
(and other tricks)

Q-learning with continuous actions

e “Continuous control with deep
reinforcement learning,” Lillicrap
et al. ‘15

e Continuous actions with

maximizer network
* Uses replay buffer and target ; -

network (with Polyak averaging)

Cheetah
Low Dimensional Features

* One-step backup

* One gradient step per simulator
step

Q-learning on a real robot

* “Robotic manipulation
with deep reinforcement
learning and ...,” Gu*,
Holly*, et al. ‘17

e Continuous actions with
NAF (quadratic in actions)

* Uses replay buffer and
target network

* One-step backup

* Four gradient steps per
simulator step for
efficiency

* Parallelized across '
multiple robots

Large-scale Q-learning with continuous actions

(QT-Opt)
_

stored data from all
past experiments

{(si,az-,s;)}z-

G o Y

live data collection

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan,

Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-

Based Robotic Manipulation Skills

training buffers

off-policy (s, a,s’,r)

on-policy (s, a,s’,r)

labeled (s,a, Qr(s,a))

\

s

0

training threads

min ||Qg (s, a) — Qr(s,a)||?

M\

4 Bellman updaters \

compute Qr(s,a) =

r + maxy Qg(s’,a’)

/,

=

Q-learning suggested readings

 Classic papers

Watkins. (1989). Learning from delayed rewards: introduces Q-learning

Riedmiller. (2005). Neural fitted Q-iteration: batch-mode Q-learning with neural
networks

* Deep reinforcement learning Q-learning papers

Lange, Riedmiller. (2010). Deep auto-encoder neural networks in reinforcement

learning: early image-based Q-learning method using autoencoders to construct
embeddings

Mnih et al. (2013). Human-level control through deep reinforcement learning: Q-
learning with convolutional networks for playing Atari.

Van Hasselt, Guez, Silver. (2015). Deep reinforcement learning with double Q-learning:
a very effective trick to improve performance of deep Q-learning.

Lillicrap et al. ﬂ2016). Continuous control with deep reinforcement learning:
continuous Q-learning with actor network for approximate maximization.

Gu, Lillicrap, Stuskever, L. (2016). Continuous deep Q-learning with model-based
acceleration: continuous Q-learning with action-quadratic value functions.
Wang, Schaul, Hessel, van Hasselt, Lanctot, de Freitas (2016). Dueling network

architectures for deep reinforcement learning: separates value and advantage
estimation in Q-function.

Review

* Q-learning in practice Qe(s,a) < r(s,a) +ymaxe Qu(s', a')

* Replay buffers
* Target networks ‘
generate

samples (i.e
run the pollcy)

fit a model to
estimate return

* Generalized fitted Q-iteration
* Double Q-learning
* Multi-step Q-learning

improve the
policy

* Q-learning with continuous a = arg maxa Qy(s, a)
actions
* Random sampling
e Analytic optimization
» Second “actor” network

Acknowledgements

Slides adapted from

CS 188 UC Berkeley
Pieter Abbeel, Dan Klein et al.

CS 285 UC Berkeley
Sergey Levine

CSC 498 Univ of Toronto
Animesh Garg

	Slide 1: CS 8803 Deep Reinforcement Learning
	Slide 2: Recap: Q-learning
	Slide 3: What’s wrong?
	Slide 4: Correlated samples in online Q-learning
	Slide 5: Another solution: replay buffers
	Slide 6: Another solution: replay buffers
	Slide 7: Putting it together
	Slide 8: Target Networks
	Slide 9: What’s wrong?
	Slide 10: Q-Learning and Regression
	Slide 11: Q-Learning with target networks
	Slide 12: “Classic” deep Q-learning algorithm (DQN)
	Slide 13: Alternative target network
	Slide 14: A General View of Q-Learning
	Slide 15: Fitted Q-iteration and Q-learning
	Slide 16: A more general view
	Slide 17: A more general view
	Slide 18: Improving Q-Learning
	Slide 19
	Slide 20: Are the Q-values accurate?
	Slide 21: Overestimation in Q-learning
	Slide 22: Double Q-learning
	Slide 23: Double Q-learning in practice
	Slide 24: Multi-step returns
	Slide 25: Q-learning with N-step returns
	Slide 26: Q-Learning with Continuous Actions
	Slide 27: Q-learning with continuous actions
	Slide 28: Q-learning with stochastic optimization
	Slide 29: Easily maximizable Q-functions
	Slide 30: Q-learning with continuous actions
	Slide 31: Q-learning with continuous actions
	Slide 32: Implementation Tips and Examples
	Slide 33: Simple practical tips for Q-learning
	Slide 34: Advanced tips for Q-learning
	Slide 35: Fitted Q-iteration in a latent space
	Slide 36: Q-learning with convolutional networks
	Slide 37: Q-learning with continuous actions
	Slide 38: Q-learning on a real robot
	Slide 39: Large-scale Q-learning with continuous actions (QT-Opt) training buffers Bellman updaters
	Slide 40: Q-learning suggested readings
	Slide 41: Review
	Slide 42: Acknowledgements

