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Recap: Q-learning

full fitted Q-iteration algorithm:

1. collect dataset {(s;,a;,s;,r;)} using some policy
Qs(s,a) < r(s,a) + ymaxay Qu(s’,a’)

fit a model to
ﬁ estimate return

2. set y; < 7(8i,a;) + v maxy Qy(s;,aj)
. 2
. set ¢ + argming 2 Y, Qe (si,a;) — yil|

generate
samples (i.e.
run the pollcy)

improve the
online Q) iteration algorithm: policy

1. take some action a; and observe (s;,a;,s;, ;) a = arg max, Qg4 (s, a)
2. y; = T(Suaz) + 7y MaXa Qfﬁ( i ’L)
3. ¢ ¢ — a G (si,2:)(Qu(si ;) — yi)



What's wrong?

online Q) iteration algorithm:

1. take some action a; and observe (s;,a;,s’, ;)
2. y; = T(quaaz‘)+’ymaxaf qu(ngaafg) \

these are correlated!
3. ¢+ ¢ — alZe(s;,a:)(Qu(si ai) — yi)

N

isn’t this just gradient descent? that converges, right?

Q-learning is not gradient descent!

60— 0% (51, (Qu(sis ) ~ o) + 7 mavr Qu(sl, a))

no gradient through
target value




Correlated samples in online Q-learning

online Q) iteration algorithm: - sequential states are strongly correlated
@ 1. take some action a; and observe (s;,a;,s’, ;) - target value is always changing
2. o ¢ — a2 d¢ = (si,a;)(Qy(si,a;) — [r(si; a;) + v maxar Qp(s;, a3)])

PAl N e NV A Y

synchronized parallel Q-learning asynchronous parallel Q-learning

get, (s,a,s’,'r)<—l I I I

update ¢ +— BE—m_m__m

get, (s,a,s’,'r)<—l I I I

update ¢ «+— B—m__m__m

I I I I ‘

b
S



Another solution: replay buffers

online ( iteration algorithm: special case with K =1, and one gradient step

1. take some action a; and observe (s;,a;,s’, ;)

2. 0 ¢ — als d¢ 2 (si,a;:)(Qg(si,a;) — [r(si; a;) + ymaxa Qy(s],aj)])

full fitted Q-iteration algorithm:

ol any policy will work! (with broad support)

£ 2. set y; < (s, a;) + v maxy Qy(s;, aj) just load data from a buffer here
X

. 1 2
3. set ¢ <— argming ) Z@ Hqu(Sz'a az‘) - .YzH still use one gradient step
dataset of transitions
Fitted Q-iteration

RN



Another solution: replay buffers

(Q-learning with a replay buffer:

@ 1. sample a batch (s@-,aq;,s’- r;) from B
2. ¢ ¢ —ad; (s, a:)(Qu(si,ai) — [r(si,a;) + v maxe Qu(s),a})])

but where does the data come from?

need to periodically feed the replay buffer...

!
s,a,s’,r
(’ ¥ ) dataset of transitions
(“replay buffer”)

-’P T '\:\'
el e

w(als) (e.g., e-greedy)

off-policy
Q-learning




Putting it together

full Q-learning with replay buffer:

1. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B
K =1 is common, though

2. sample a batch (sz-, a;,s,,r;) from B larger K more efficient

3. qb — Qﬁ — @E'J, do (S'Laa%)(Q¢(S'wa®) - [T(Siaa’i) + Y maXy; QCﬁ(S;va;)])

dataset of transitions
(“replay buffer”)

off-policy
Q-learning

w(als) (e.g., e-greedy)



Target Networks



What's wrong?

online Q) iteration algorithm:

1. take some action a; and observe (s;,a;,s’, ;)

2. y; = (s, az-) + vy maxay Qy(s), a;) \
e e o e
3. ¢+ ¢ — alZe(s;,a:)(Qu(si ai) — yi)

use replay buffer

Q-learning is not gradient descent!

This is still a
s T N ) Sy

no gradient through target value



Q-Learning and Regression

full Q-learning with replay buffer:
1. collect dataset {(s;,a;,s,;)} using some policy, add it to B

2. sample a batch (S,i, a;,s;,r;) from B

3. ¢« Cb—azz Ao = (si,a;)(Qe(si,a;) — [r(si, a;) + 7y maxa Qp(s;, aj)])

K X

one gradient step, moving target

full fitted Q-iteration algorithm:
1. collect dataset {(s;,a;,s;,r;)} using some policy
2. set y; < r(si,a;) +ymaxa Qu(s],a;)

K x ) 1 9
3. set ¢ < argming 5 ZZ ||Q¢,(s@-,a¢) - Y@H

perfectly well-defined, stable regression



Q-Learning with target networks

Q-learning with replay buffer and target network:

1. save target network parameters: ¢’ < ¢
2. collect dataset {(s;,a;,s.,r;)} using some policy, add it to B
N x 3. sample a batch (ST,, a;,s;,r;) from B

K x
4§ ¢— X, Fe(siai)(Qolsi ai) — [r(si, ai) + 7 maxa Qg (s, a})])

targets don’t change in inner loop!

uoISsa.13a4 pasiniddns



“Classic” deep Q-learning algorithm (DQN)

()-learning with replay buffer and target network:
1. save target network parameters: ¢’ < ¢
2. collect dataset {(s;,a;,s},r;)} using some policy, add it to B

N><K 3. sample a batch (si,a?;,s’-,r,i) from B
X

4. ¢ ¢_@Z@ dé (sz,a@)(qu(sz,az) — [r(si,a;) + v maxqy ch’( si>a;)])

“classic” deep Q-learning algorithm:
1. take some action a; and observe (s;,a;, s, r;), add it to B
sample mini-batch {s;,a;,s’,r;} from B uniformly
compute y; = 'rj + 7 maxa Qy (8}, @) using target network Qg K =1
L PP — azj a6 = (s5,85)(Qe(sy,a;) — yj)
update ¢': copy ¢ every N steps

U o

Mnih et al. “13 You’ll implement this in HW!



Alternative target network

“classic” deep Q-learning algorithm:

> 1. take some action a; and observe (s;,a;,s;,7;), add it to B

2. sample mini-batch {s;,a;,s’,r;} from B uniformly

3. compute y; = fr'j + Y Maxy Q¢r( ) using target network )y
4. ¢« ¢ — OZZJ Ao = (s5,a5)(Qe(s), a5) — yj)

g

Intuition:

maximal lag
get target from here ( t ~ \ no lag here
(s,a,s',7) o (s,a,s',7) o (s,a,s,r) o (s,a5s,r) ¢ (s,a5ss,r) ¢

Feels weirdly uneven, can we always have the same lag?

Popular alternative (similar to Polyak averaging):

5. update ¢': ¢ <+ 17¢' + (1 — 7)o 7 = 0.999 works well



A General View of Q-Learning



Fitted Q-iteration and Q-learning

Q-learning with replay buffer and target network: DQN: N =1, K =1
1. save target network parameters: ¢’ < ¢
2. collect M datapoints {(s;,a;,s;,r;)} using some policy, add them to B

NXK 3. sample a batch (S@-,a,,;,s’- r;) from B
X
4. ¢+ ¢ — szz do 2 (si,a;)(Qe(si,a;) — [r(ss,a;) + v maxa Qg (s;, A)])

Fitted Q-learning (written similarly as above):
1. collect M datapoints {(s;, a;,s., ;) } using some policy, add them to B

2. save target network parameters: ¢’ < ¢

N x 3. sample a batch (sz, a;,s;,r;) from B
KX . just SGD
4. ¢+ ¢ —« Zz db (S’La a?/)(Q'fb(S%a al) - [T(S?ﬁa ai) + 7Y MaXa' Q¢’ (Sia az)])



A more general view

QQ-learning with replay buffer and target network:
> 1. save target network parameters: ¢’ < ¢

’E . collect M datapoints {(s;,a;,s;,r;)} using some policy, add them to B
o @

. sample a batch (S@-, a;,s;,r;) from B

4. ¢ + @ — O{Zz “do (81932)(Q¢(S%a aZ) _ [T(S’ia ai) + 7Y MaXa’ Q¢’ (s;,a;)])

@ process 2

process 1: data collection SRR target update

parameters

/
(s,a,8',7) . ¢ ¢
dataset of transitions
(“replay buffer”) process 3
" .\:\‘0

\\

m(als) (e.g., e-greedy)

evict old data




A more general view
process 1: data collection @ process 2

parameters target update

parameters

(s,a,8,7) . ¢ ¢
dataset of transitions
(“replay buffer”)
.f .\. .

&

m(als) (e.g., e-greedy)

evict old data

* Online Q-learning (last lecture): evict immediately, process 1, process 2, and process 3 all run at
the same speed

 DQN: process 1 and process 3 run at the same speed, process 2 is slow

* Fitted Q-iteration: process 3 in the inner loop of process 2, which is in the inner loop of process 1



Improving Q-Learning



Are the Q-values accurate?
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Are the Q-values accurate?

| ~Space Invaders ~ Time Pilot - Zaxxon
a 20 - 2.5 -
% 8 DQN estimate
'.%' 15 -
O 15 4 = ;
Q ouble DQN estimate
= 10 ; 1.0 2 |
] ouble DQN true value
> 0 e DQN true value

0 50 100 150 200 O 50 100 150 200 O 50 100 150 200 O 50 100 150 200
Training steps (in millions)



Overestimation in Q-learning

target value y; = r; + 7 MaXa! oFY (53'9 a;-)

N

this last term is the problem

imagine we have two random variables: X7 and X5
Elmax (X, X2)] > max(FE[X4], F[X3])

Q4 (s’,a’) is not perfect — it looks “noisy”

hence maxa' Qg (s',a’) overestimates the next value!

note that maxy Qg (s',a’) = Qu (', argmaxy Qg (s',a’))

value also comes from )y action selected according to Qg



Double Q-learning

Elmax(X7, Xo)] > max(E|[X;], E[X3])

note that maxy Qu (s',a") = Qu (', arg maxy Qu (s',a’))

value also comes from )y action selected according to @)y

N /

if the noise in these is decorrelated, the problem goes away!
idea: don’t use the same network to choose the action and evaluate value!

“double” Q-learning: use two networks:

Q¢5A (87 a) <+ 7Q¢B (SIJ arg H?X QQbA (5,7 al))

Qo (s,a) =7 +7Q0p, (8 argmax Qy, (s',a'))

AN /

if the two QQ’s are noisy in different ways, there is no problem



Double Q-learning in practice

where to get two Q-functions?

just use the current and target networks!

standard Q-learning: y = r + 7Qyu (s, arg max, Q. (s’,a’
¢ ¢

double Q-learning: y = r + vQ4 (s, arg maXala a'))

just use current network (not target network) to evaluate action

still use target network to evaluate value!



Multi-step returns

(Q-learning target: Yjt =Tt T yMaXa, . qu, (Sj,t+1, aj,t+1)

7

these are the only values that matter if (), is bad! these values are important if Qg is good

' ? . . . . .
where does the signal come from! Q-learning does this: max bias, min variance

1e? L ’
remembel’ thlS ! Actororiia: VoJ(0) ~ — Z ZVH log 7o (ai.¢|si & (r(s,;,.a,;,) + YV (8i042) } V. (Si./)>
N i=1 t=1
- not unbiased (if the critic is not perfect)
i -
Policy gradient:  V,.J(0 Vo log mg(a; ¢|sit) ((Z v "t (sies ai.l’)) = b)
i=1 t=1 t/=t

- higher variance (because single-sample estimate)

can we construct multi-step targets, like in actor-critic?

L t+N—1 ¢ N
Yit =2y YT e+ maxa, .,y Qo (Sj 4N, 44 N)

N-step return estimator



Q-learning with N-step returns

_ t+N—-1 ¢/ N
Yjt = Qip—¢ Y Tie Ty MaXa; .,y Q¢ (Sj,t4+N, Q514 N)

.. : Tl |
this is supposed to estimate ¢/ (Sﬂst’ aﬂvt) for m - only actually correct when learning on-policy

B 1 if a; = arg max,, Q¢(St= at) Why?
m(ase) = { 0 otherwise

we need transitions s;,a; 4,8, 41 to come from 7 for t' —t < N — 1

(not an issue when N = 1)

how to fix? * ignore the problem
e often works very well

. gut the trace — dynamically choose N to get only on-policy
ata

* works well when data mostly on-policy, and action space is small
e importance sampling

For more details, see: “Safe and efficient off-policy reinforcement learning.” Munos et al. ‘16



Q-Learning with Continuous Actions



Q-learning with continuous actions

What’s the problem with continuous actions?

1 if a; =(arg max, S¢, a this max
w(ads:) = { Qg Qolo )

0 otherwisé

target value y; = r; + (maxy Qg (s’,a’;) this max
° v ’ a; O\ gy particularly problematic (inner loop of training)

How do we perform the max?
Option 1: optimization
e gradient based optimization (e.g., SGD) a bit slow

in the inner loop

e action space typically low-dimensional — what
about stochastic optimization?



Q-learning with stochastic optimization

Simple solution:

mSXQ(S7 a) ~ nax {Q(Sa al)a SR Q(Sa aN)}
(ay,...,an) sampled from some distribution (e.g., uniform) - not very accurate

but... do we care? How good does the target need to be anyway?

More accurate solution:

works OK, for up to about 40
* cross-entropy method (CEM) dimensions

* simple iterative stochastic optimization
* CMA-ES

» substantially less simple iterative stochastic optimization



Easily maximizable Q-functions

Option 2: use function class that is easy to optimize

1 — |—> 7
Qu(sa) = —5(a— o) Pols)a—us(s) +Vals) S I P il Q’
—> |

NAF: Normalized Advantage Functions

- loses representational power
arg max Qs(s,a) = pg(s) max Qe(s,a) = Vy(s)

Gu, Lillicrap, Sutskever, L., ICML 2016



Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG (Lillicrap et al., ICLR 2016) deterministic” actor-critic

(really approximate Q-learning)
maxa Q¢ (8,a) = Qy(s,argmax, Q4(s,a))

idea: train another network pg(s) such that pg(s) ~ argmax, Q4(s, a)

dQ¢ B da qub

how? just solve 6 < arg max S, 1y (s = %9
: gmaxy Qo(s, 1o s)) 9~ df da

new target y; = 7; +vQg (s}, no(s})) = rj + 7Qy (s}, arg maxa Qg (s}, %))



Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG:

take some action a; and observe (s;,a;, s}, r;), add it to B

sample mini-batch {s;,a;,s’,r;} from B uniformly

compute y; = 7’3 + Q¢ (S}, per (s)) using target nets Qg and pig:
L P9 — 0523 b = (s5,25)(Qo(ss,a5) — yj)

0 0+ 8%, G (s) et (55, 1(s5)

update ¢’ and 6’ (e.g., Polyak averaging)

S



Implementation Tips and Examples



Simple practical tips for Q-learning

* Q-learning takes some care to stabilize
* Test on easy, reliable tasks first, make sure your implementation is correct

e [ Breakout T 400000 Video Pinball 250 el

S 200

320000

240000

160000

800004 /
il

[ 150
M (A 100
s 50

0

Figure: From T. Schaul, J. Quan, |. Antonoglou, and D. Silver. “Prioritized experience
replay”. arXiv preprint arXiv:1511.05952 (2015), Figure 7

* Large replay buffers help improve stability
* Looks more like fitted Q-iteration

* |t takes time, be patient — might be no better than random for a
while

e Start with high exploration (epsilon) and gradually reduce

Slide partly borrowed from J. Schulman



Advanced tips for Q-learning

* Bellman error gradients can be big; clip gradients or use Huber
loss

L(x) = {x2/2 if | x| <96

§|x| — 8%/2 otherwise

* Double Q-learning helps a lot in practice, simple and no downsides
* N-step returns also help a lot, but have some downsides

* Schedule exploration (high to low) and learning rates (high to low), Adam
optimizer can help too

* Run multiple random seeds, it’s very inconsistent between runs

Slide partly borrowed from J. Schulman



Fitted Q-iteration in a latent space

target: reconstruction Deep Autoencoder
“Autonomous [‘
reinforcement learning

from raw visual data,”
Lange & Riedmiller ‘12

gradient descent

* Q-learning on top of
latent space learned
with autoencoder

* Uses fitted Q-iteration

feature space

low-dimensional

action a

e Extra random trees for
function approximation
(but neural net for
embedding)

improved by
Reinforcement
Learning

%f’)

maps feature
vectors to
actions




Q-learning with convolutional networks

“Human-level control
through deep
reinforcement learning,”

Mnih et al. ‘13
* Q-learning with
convolutional networks

\\_.

WO MINUTE

PAPERS

* Uses replay buffer and

target network ATARI"
" One-step backup GOOGLE DEEPMIND'S DEEP Q-LEARNING
* One gradient step SUPERHUMAN ATARI G AY

* Can be improved a lot
with double Q-learning
(and other tricks)




Q-learning with continuous actions

e “Continuous control with deep
reinforcement learning,” Lillicrap
et al. ‘15

e Continuous actions with

maximizer network
* Uses replay buffer and target ; -

network (with Polyak averaging)

Cheetah
Low Dimensional Features

* One-step backup

* One gradient step per simulator
step




Q-learning on a real robot

* “Robotic manipulation
with deep reinforcement
learning and ...,” Gu*,
Holly*, et al. ‘17

e Continuous actions with
NAF (quadratic in actions)

* Uses replay buffer and
target network

* One-step backup

* Four gradient steps per
simulator step for
efficiency

* Parallelized across '
multiple robots




Large-scale Q-learning with continuous actions

(QT-Opt)
_

stored data from all
past experiments

{(si,az-,s;)}z-

G o Y

live data collection

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan,

Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-

Based Robotic Manipulation Skills

training buffers

off-policy (s, a,s’,r)

on-policy (s, a,s’,r)

labeled (s,a, Qr(s,a))

\

s

0

training threads

min ||Qg (s, a) — Qr(s,a)||?

M\

4 Bellman updaters \

compute Qr(s,a) =

r + maxy Qg(s’,a’)

/,

=




Q-learning suggested readings

 Classic papers

Watkins. (1989). Learning from delayed rewards: introduces Q-learning

Riedmiller. (2005). Neural fitted Q-iteration: batch-mode Q-learning with neural
networks

* Deep reinforcement learning Q-learning papers

Lange, Riedmiller. (2010). Deep auto-encoder neural networks in reinforcement

learning: early image-based Q-learning method using autoencoders to construct
embeddings

Mnih et al. (2013). Human-level control through deep reinforcement learning: Q-
learning with convolutional networks for playing Atari.

Van Hasselt, Guez, Silver. (2015). Deep reinforcement learning with double Q-learning:
a very effective trick to improve performance of deep Q-learning.

Lillicrap et al. ﬂ2016). Continuous control with deep reinforcement learning:
continuous Q-learning with actor network for approximate maximization.

Gu, Lillicrap, Stuskever, L. (2016). Continuous deep Q-learning with model-based
acceleration: continuous Q-learning with action-quadratic value functions.
Wang, Schaul, Hessel, van Hasselt, Lanctot, de Freitas (2016). Dueling network

architectures for deep reinforcement learning: separates value and advantage
estimation in Q-function.



Review

* Q-learning in practice Qe(s,a) < r(s,a) +ymaxe Qu(s', a')

* Replay buffers
* Target networks ‘
generate

samples (i.e
run the pollcy)

fit a model to
estimate return

* Generalized fitted Q-iteration
* Double Q-learning
* Multi-step Q-learning

improve the
policy

* Q-learning with continuous a = arg maxa Qy(s, a)
actions
* Random sampling
e Analytic optimization
» Second “actor” network
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