CS 8803 Deep Reinforcement Learning

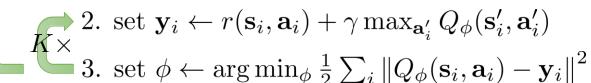
Lec 7: Deep RL with Q-Function Fall 2024

Animesh Garg
Slides from Sergey Levine

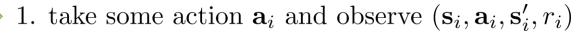
Recap: Q-learning

full fitted Q-iteration algorithm:

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy

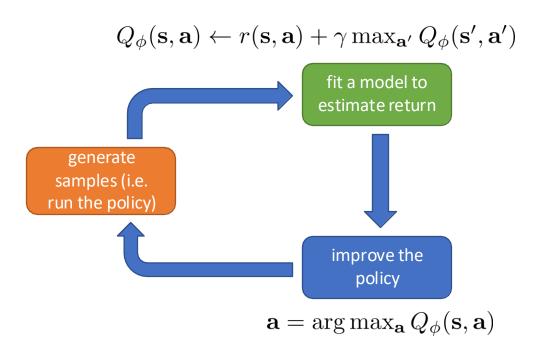


online Q iteration algorithm:



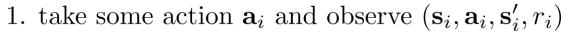
2.
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

3.
$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$$



What's wrong?

online Q iteration algorithm:



2.
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

these are correlated!

2.
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

3. $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$

isn't this just gradient descent? that converges, right?

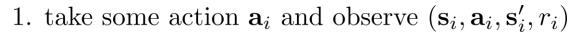
Q-learning is *not* gradient descent!

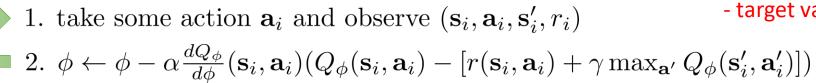
$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)))$$

no gradient through target value

Correlated samples in online Q-learning

online Q iteration algorithm:





synchronized parallel Q-learning

asynchronous parallel Q-learning

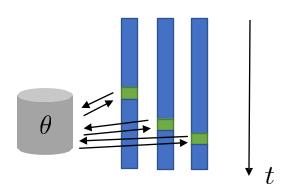
get
$$(\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \leftarrow$$

update $\phi \leftarrow$

get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \leftarrow$

update $\phi \leftarrow$

update $\phi \leftarrow$



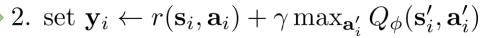
Another solution: replay buffers

online Q iteration algorithm:

special case with K = 1, and one gradient step

1. take some action
$$\mathbf{a}_i$$
 and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$
2. $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')])$

full fitted Q-iteration algorithm:



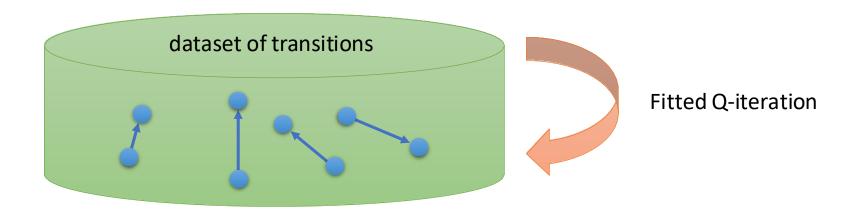
2. set
$$\mathbf{y}_{i} \leftarrow r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \max_{\mathbf{a}'_{i}} Q_{\phi}(\mathbf{s}'_{i}, \mathbf{a}'_{i})$$

3. set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{y}_{i}\|^{2}$

any policy will work! (with broad support)

just load data from a buffer here

still use one gradient step



Another solution: replay buffers

Q-learning with a replay buffer:

+ samples are no longer correlated

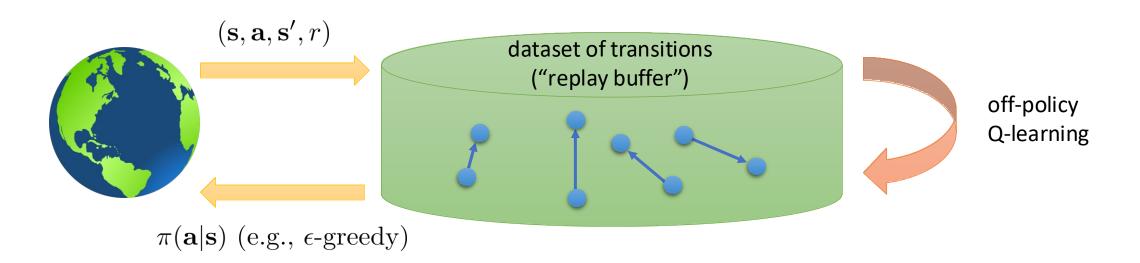
1. sample a batch
$$(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$$
 from \mathcal{B}

2. $\phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i) (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')])$

+ multiple samples in the batch (low-variance gradient)

but where does the data come from?

need to periodically feed the replay buffer...



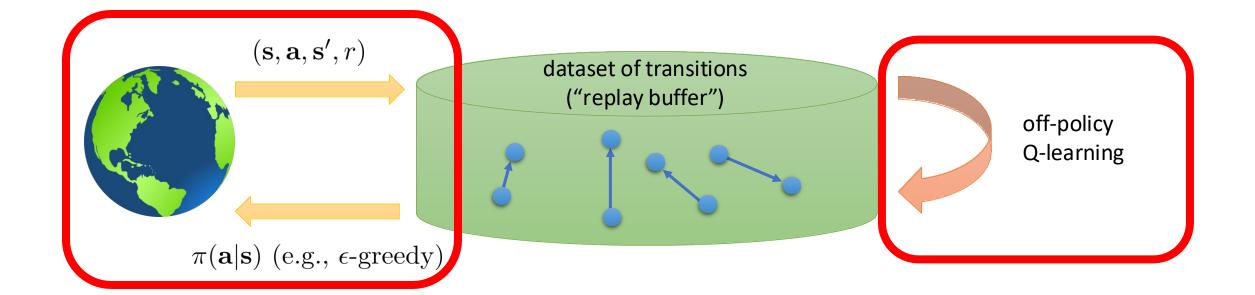
Putting it together

full Q-learning with replay buffer:

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$ using some policy, add it to \mathcal{B}

2. sample a batch
$$(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$$
 from \mathcal{B}
3. $\phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i) (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)])$

K = 1 is common, though larger K more efficient



Target Networks

What's wrong?

online Q iteration algorithm:

1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$

2.
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

2.
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

3. $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$

use replay buffer

Q-learning is *not* gradient descent!

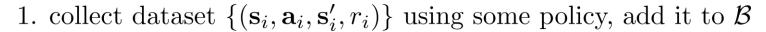
$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)])$$

no gradient through target value

This is still a problem!

Q-Learning and Regression

full Q-learning with replay buffer:



2. sample a batch
$$(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$$
 from \mathcal{B}
3. $\phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)])$

one gradient step, moving target

full fitted Q-iteration algorithm:

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy

2. set
$$\mathbf{y}_{i} \leftarrow r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \max_{\mathbf{a}'_{i}} Q_{\phi}(\mathbf{s}'_{i}, \mathbf{a}'_{i})$$

$$3. \text{ set } \phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{y}_{i}\|^{2}$$

perfectly well-defined, stable regression

Q-Learning with target networks

Q-learning with replay buffer and target network:

- 1. save target network parameters: $\phi' \leftarrow \phi$

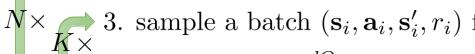
2. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add it to \mathcal{B} 1. $\mathbf{X} \times \mathbf{X} \times \mathbf{X}$

targets don't change in inner loop!

"Classic" deep Q-learning algorithm (DQN)

Q-learning with replay buffer and target network:

- 1. save target network parameters: $\phi' \leftarrow \phi$



2. collect dataset
$$\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$$
 using some policy, add it to \mathcal{B}

$$(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i) \text{ from } \mathcal{B}$$

$$(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i) \text{ from } \mathcal{B}$$

$$(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i) \text{ from } \mathcal{B}$$

$$(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}'_i, \mathbf{a}'_i)])$$

"classic" deep Q-learning algorithm:

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$, add it to \mathcal{B}
- 2. sample mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$ from \mathcal{B} uniformly
- 3. compute $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ using target network $Q_{\phi'}$ 4. $\phi \leftarrow \phi \alpha \sum_j \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_j, \mathbf{a}_j)(Q_{\phi}(\mathbf{s}_j, \mathbf{a}_j) y_j)$ 5. updata A'

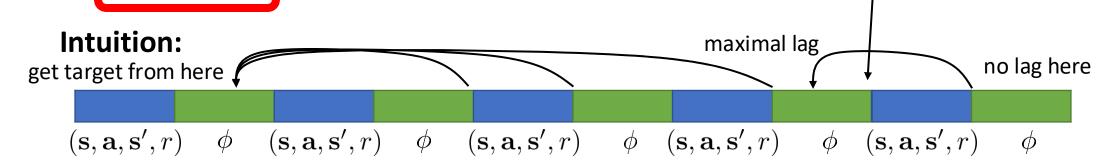
 - 5. update ϕ' : copy ϕ every N steps

You'll implement this in HW!

Alternative target network

"classic" deep Q-learning algorithm:

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$, add it to \mathcal{B}
- 2. sample mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_i, r_j\}$ from \mathcal{B} uniformly
- 3. compute $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ using target network $Q_{\phi'}$
- 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) y_{j})$
- 5. update ϕ'



Feels weirdly uneven, can we always have the same lag?

Popular alternative (similar to Polyak averaging):

5. update ϕ' : $\phi' \leftarrow \tau \phi' + (1 - \tau)\phi$

 $\tau = 0.999$ works well

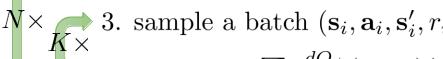
A General View of Q-Learning

Fitted Q-iteration and Q-learning

Q-learning with replay buffer and target network:

DQN:
$$N = 1, K = 1$$

- 1. save target network parameters: $\phi' \leftarrow \phi$



2. collect
$$M$$
 datapoints $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add them to \mathcal{B}
 $X \leftarrow 3$. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ from \mathcal{B}
 $A \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}'_i, \mathbf{a}'_i)])$

Fitted Q-learning (written similarly as above):

- 1. collect M datapoints $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add them to \mathcal{B}

$$\mathbb{N} \times \longrightarrow 3$$
. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ from \mathcal{B}

2. save target network parameters:
$$\phi' \leftarrow \phi$$

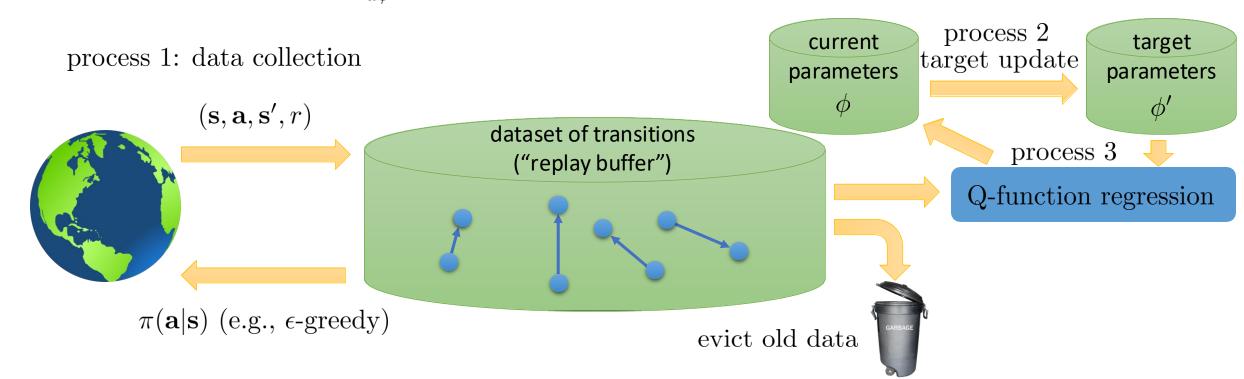
$$\begin{array}{c}
X \times \mathbf{A} \\
X \times \mathbf{A}
\end{array}$$
3. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ from \mathcal{B}

$$4. \quad \phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}_i', \mathbf{a}_i')])$$
just SGD

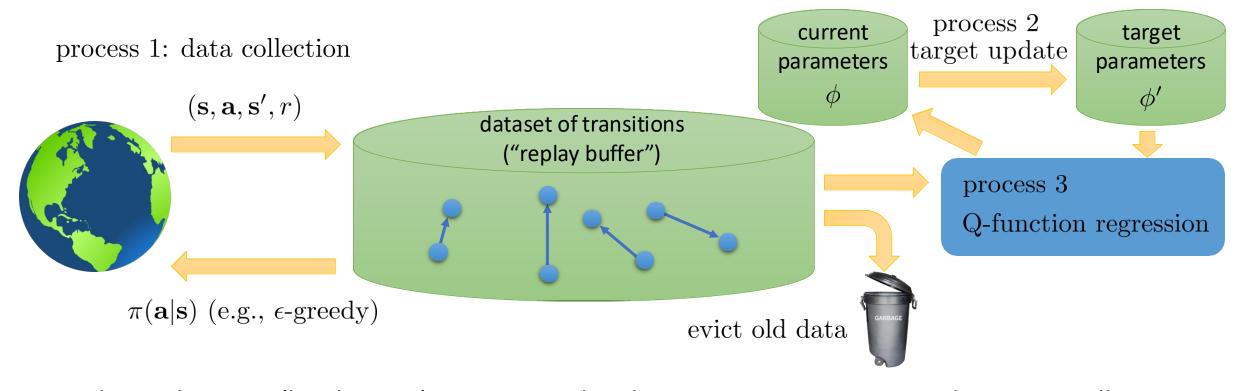
A more general view

Q-learning with replay buffer and target network:

- 1. save target network parameters: $\phi' \leftarrow \phi$
 - 2. collect M datapoints $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add them to \mathcal{B}
- N× 3. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ from \mathcal{B} 4. $\phi \leftarrow \phi \alpha \sum_i \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}'_i, \mathbf{a}'_i)])$



A more general view

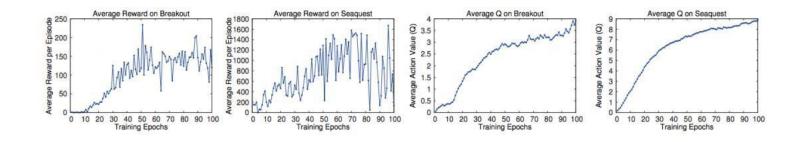


- Online Q-learning (last lecture): evict immediately, process 1, process 2, and process 3 all run at the same speed
- DQN: process 1 and process 3 run at the same speed, process 2 is slow
- Fitted Q-iteration: process 3 in the inner loop of process 2, which is in the inner loop of process 1

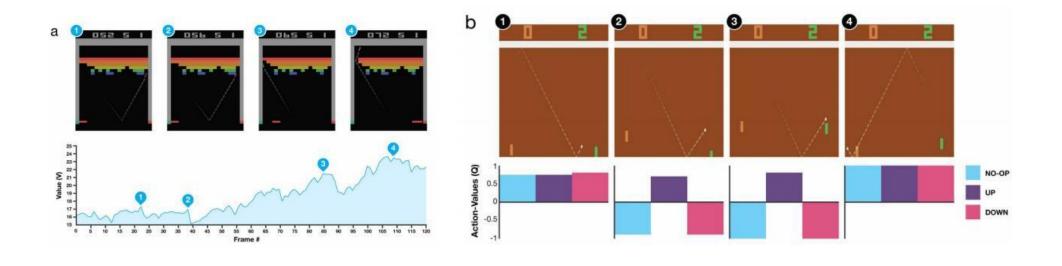
Improving Q-Learning

Are the Q-values accurate?

Breakout

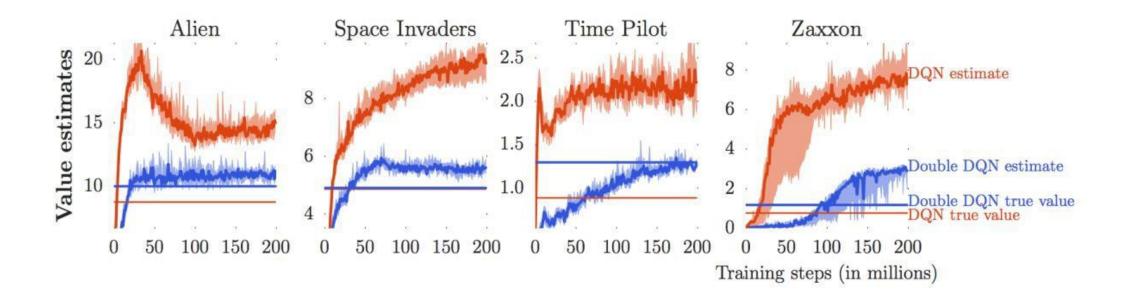


As predicted Q increases, so does the return



Pong

Are the Q-values accurate?



Overestimation in Q-learning

target value $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ this last term is the problem

imagine we have two random variables: X_1 and X_2

$$E[\max(X_1, X_2)] \ge \max(E[X_1], E[X_2])$$

 $Q_{\phi'}(\mathbf{s'}, \mathbf{a'})$ is not perfect – it looks "noisy"

hence $\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}')$ overestimates the next value!

note that $\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}') = \underline{Q_{\phi'}}(\mathbf{s}', \underline{\arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}')})$ value also comes from $Q_{\phi'}$ action selected according to $Q_{\phi'}$

Double Q-learning

$$E[\max(X_1, X_2)] \ge \max(E[X_1], E[X_2])$$

note that
$$\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}') = Q_{\phi'}(\mathbf{s}', \arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}'))$$

value also comes from $Q_{\phi'}$ action selected according to $Q_{\phi'}$



if the noise in these is decorrelated, the problem goes away!

idea: don't use the same network to choose the action and evaluate value!

"double" Q-learning: use two networks:

$$Q_{\phi_A}(\mathbf{s}, \mathbf{a}) \leftarrow r + \gamma Q_{\phi_B}(\mathbf{s}', \arg \max_{\mathbf{a}'} Q_{\phi_A}(\mathbf{s}', \mathbf{a}'))$$

$$Q_{\phi_B}(\mathbf{s}, \mathbf{a}) \leftarrow r + \gamma Q_{\phi_A}(\mathbf{s}', \arg \max_{\mathbf{a}'} Q_{\phi_B}(\mathbf{s}', \mathbf{a}'))$$

if the two Q's are noisy in different ways, there is no problem

Double Q-learning in practice

where to get two Q-functions?

just use the current and target networks!

standard Q-learning: $y = r + \gamma Q_{\phi'}(\mathbf{s'}, \arg \max_{\mathbf{a'}} Q_{\phi'}(\mathbf{s'}, \mathbf{a'}))$

double Q-learning: $y = r + \gamma Q_{\phi'}(\mathbf{s'}, \arg\max_{\mathbf{a}} Q_{\phi}(\mathbf{s'}, \mathbf{a'}))$

just use current network (not target network) to evaluate action still use target network to evaluate value!

Multi-step returns

Q-learning target: $y_{j,t} = r_{j,t} + \gamma \max_{\mathbf{a}_{j,t+1}} Q_{\phi'}(\mathbf{s}_{j,t+1}, \mathbf{a}_{j,t+1})$

these are the only values that matter if $Q_{\phi'}$ is bad!

these values are important if $Q_{\phi'}$ is good

where does the signal come from?

Q-learning does this: max bias, min variance

remember this?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t}) \right)$$

Policy gradient:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) - b \right)$$

higher variance (because single-sample estimate)

can we construct multi-step targets, like in actor-critic?

$$y_{j,t} = \sum_{t'=t}^{t+N-1} \gamma^{t-t'} r_{j,t'} + \gamma^N \max_{\mathbf{a}_{j,t+N}} Q_{\phi'}(\mathbf{s}_{j,t+N}, \mathbf{a}_{j,t+N})$$

N-step return estimator

Q-learning with N-step returns

$$y_{j,t} = \sum_{t'=t}^{t+N-1} \gamma^{t-t'} r_{j,t'} + \gamma^N \max_{\mathbf{a}_{j,t+N}} Q_{\phi'}(\mathbf{s}_{j,t+N}, \mathbf{a}_{j,t+N})$$
this is supposed to estimate $Q^{\pi}(\mathbf{s}_{j,t}, \mathbf{a}_{j,t})$ for π

$$\pi(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q_{\phi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

- + less biased target values when Q-values are inaccurate
- + typically faster learning, especially early on
- only actually correct when learning on-policy

why?

we need transitions $\mathbf{s}_{j,t'}, \mathbf{a}_{j,t'}, \mathbf{s}_{j,t'+1}$ to come from π for t'-t < N-1 (not an issue when N=1)

how to fix?

- ignore the problem
 - often works very well
- cut the trace dynamically choose N to get only on-policy data
 - works well when data mostly on-policy, and action space is small
- importance sampling

Q-Learning with Continuous Actions

Q-learning with continuous actions

What's the problem with continuous actions?

$$\pi(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q_{\phi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$
 this max

target value
$$y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$$
 this max particularly problematic (inner loop of training)

How do we perform the max?

Option 1: optimization

- gradient based optimization (e.g., SGD) a bit slow in the inner loop
- action space typically low-dimensional what about stochastic optimization?

Q-learning with stochastic optimization

Simple solution:

```
\max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a}) \approx \max \{Q(\mathbf{s}, \mathbf{a}_1), \dots, Q(\mathbf{s}, \mathbf{a}_N)\}
(\mathbf{a}_1, \dots, \mathbf{a}_N) \text{ sampled from some distribution (e.g., uniform)}
```

- + dead simple
- + efficiently parallelizable
- not very accurate

but... do we care? How good does the target need to be anyway?

More accurate solution:

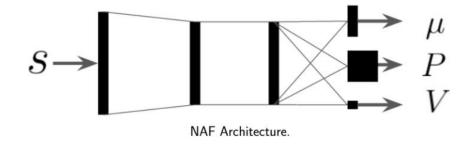
- cross-entropy method (CEM)
 - simple iterative stochastic optimization
- CMA-ES
 - substantially less simple iterative stochastic optimization

works OK, for up to about 40 dimensions

Easily maximizable Q-functions

Option 2: use function class that is easy to optimize

$$Q_{\phi}(\mathbf{s}, \mathbf{a}) = -\frac{1}{2} (\mathbf{a} - \mu_{\phi}(\mathbf{s}))^{T} P_{\phi}(\mathbf{s}) (\mathbf{a} - \mu_{\phi}(\mathbf{s})) + V_{\phi}(\mathbf{s})$$



NAF: Normalized Advantage Functions

$$\arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = \mu_{\phi}(\mathbf{s}) \qquad \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = V_{\phi}(\mathbf{s})$$

- + no change to algorithm
- + just as efficient as Q-learning
- loses representational power

Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG (Lillicrap et al., ICLR 2016)

"deterministic" actor-critic (really approximate Q-learning)

$$\max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = Q_{\phi}(\mathbf{s}, \arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}))$$

idea: train another network $\mu_{\theta}(\mathbf{s})$ such that $\mu_{\theta}(\mathbf{s}) \approx \arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a})$

how? just solve
$$\theta \leftarrow \arg \max_{\theta} Q_{\phi}(\mathbf{s}, \mu_{\theta}(\mathbf{s}))$$

$$\frac{dQ_{\phi}}{d\theta} = \frac{d\mathbf{a}}{d\theta} \frac{dQ_{\phi}}{d\mathbf{a}}$$

new target
$$y_j = r_j + \gamma Q_{\phi'}(\mathbf{s}'_j, \mu_{\theta}(\mathbf{s}'_j)) \approx r_j + \gamma Q_{\phi'}(\mathbf{s}'_j, \arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j))$$

Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG:

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$, add it to \mathcal{B}
- 2. sample mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$ from \mathcal{B} uniformly
- 3. compute $y_j = r_j + \gamma Q_{\phi'}(\mathbf{s}'_j, \mu_{\theta'}(\mathbf{s}'_j))$ using target nets $Q_{\phi'}$ and $\mu_{\theta'}$
- 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) y_{j})$
- 5. $\theta \leftarrow \theta + \beta \sum_{j} \frac{d\mu}{d\theta}(\mathbf{s}_{j}) \frac{dQ_{\phi}}{d\mathbf{a}}(\mathbf{s}_{j}, \mu(\mathbf{s}_{j}))$
- 6. update ϕ' and θ' (e.g., Polyak averaging)

Implementation Tips and Examples

Simple practical tips for Q-learning

- Q-learning takes some care to stabilize
 - Test on easy, reliable tasks first, make sure your implementation is correct

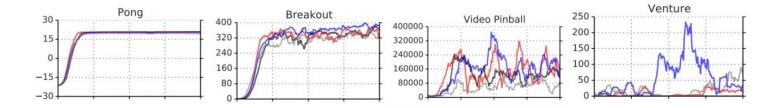


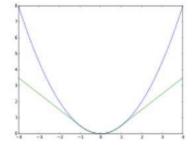
Figure: From T. Schaul, J. Quan, I. Antonoglou, and D. Silver. "Prioritized experience replay". arXiv preprint arXiv:1511.05952 (2015), Figure 7

- Large replay buffers help improve stability
 - Looks more like fitted Q-iteration
- It takes time, be patient might be no better than random for a while
- Start with high exploration (epsilon) and gradually reduce

Advanced tips for Q-learning

Bellman error gradients can be big; clip gradients or use Huber loss

$$L(x) = \begin{cases} x^2/2 & \text{if } |x| \le \delta \\ \delta |x| - \delta^2/2 & \text{otherwise} \end{cases}$$

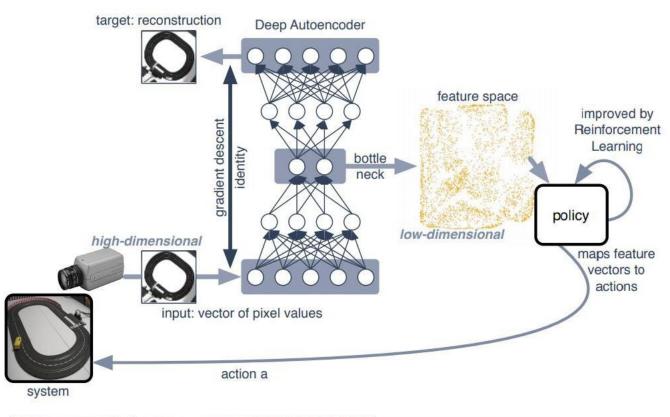


- Double Q-learning helps *a lot* in practice, simple and no downsides
- N-step returns also help a lot, but have some downsides
- Schedule exploration (high to low) and learning rates (high to low), Adam optimizer can help too
- Run multiple random seeds, it's very inconsistent between runs

Fitted Q-iteration in a latent space

"Autonomous reinforcement learning from raw visual data," Lange & Riedmiller '12

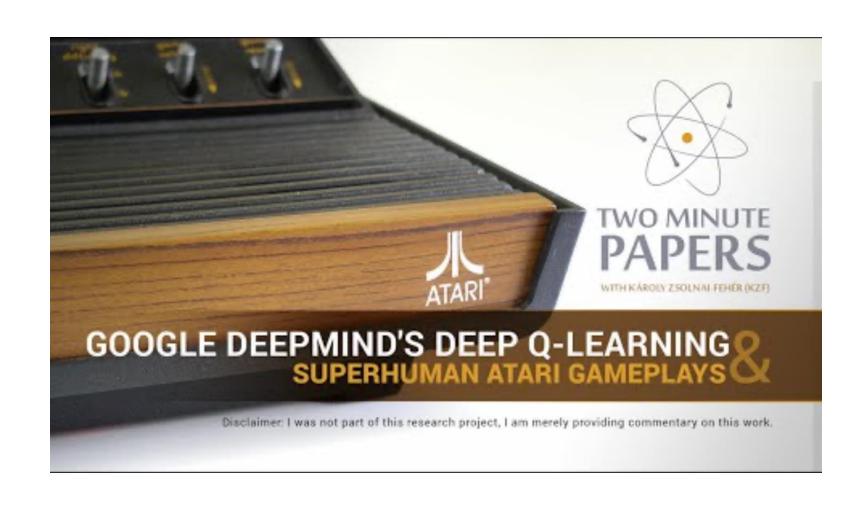
- Q-learning on top of latent space learned with autoencoder
- Uses fitted Q-iteration
- Extra random trees for function approximation (but neural net for embedding)



Q-learning with convolutional networks

"Human-level control through deep reinforcement learning," Mnih et al. '13

- Q-learning with convolutional networks
- Uses replay buffer and target network
- One-step backup
- One gradient step
- Can be improved a lot with double Q-learning (and other tricks)

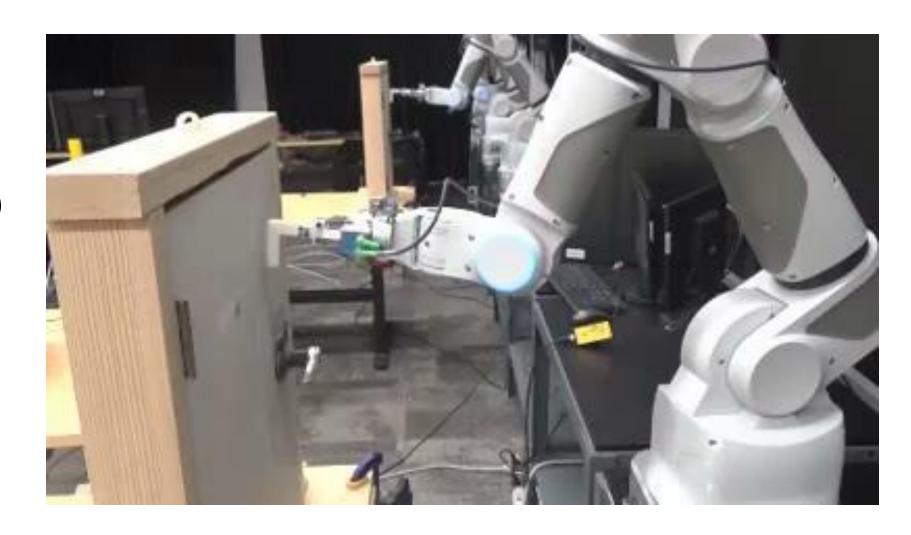


Q-learning with continuous actions

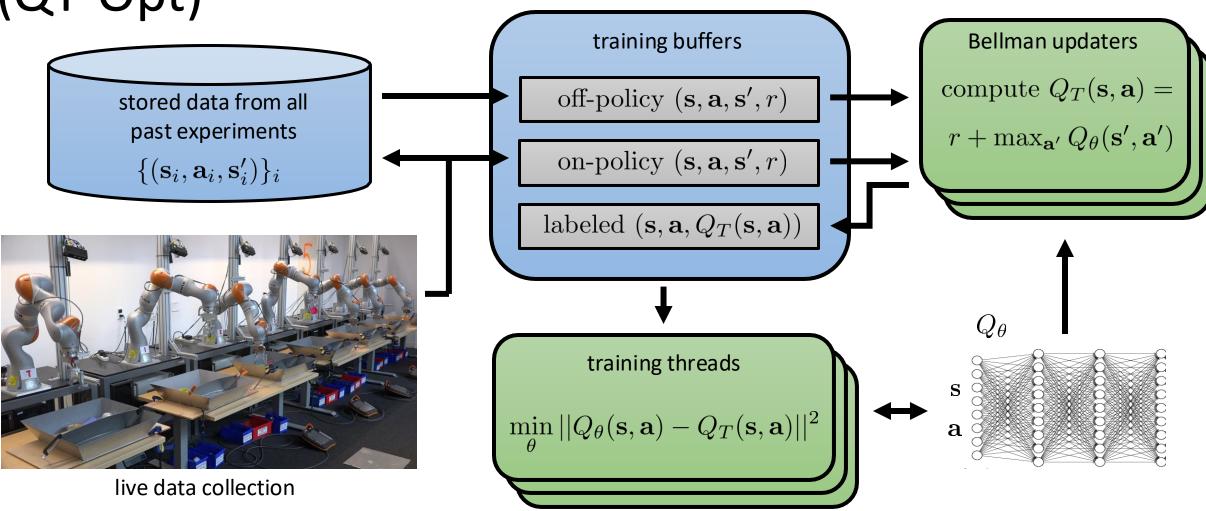
- "Continuous control with deep reinforcement learning," Lillicrap et al. '15
- Continuous actions with maximizer network
- Uses replay buffer and target network (with Polyak averaging)
- One-step backup
- One gradient step per simulator step

Q-learning on a real robot

- "Robotic manipulation with deep reinforcement learning and ...," Gu*, Holly*, et al. '17
- Continuous actions with NAF (quadratic in actions)
- Uses replay buffer and target network
- One-step backup
- Four gradient steps per simulator step for efficiency
- Parallelized across multiple robots



Large-scale Q-learning with continuous actions (QT-Opt)



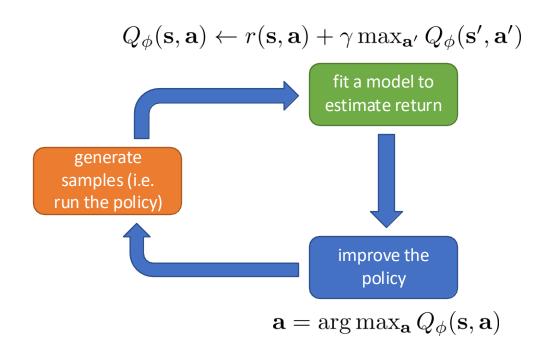
Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-Based Robotic Manipulation Skills

Q-learning suggested readings

- Classic papers
 - Watkins. (1989). Learning from delayed rewards: introduces Q-learning
 - Riedmiller. (2005). Neural fitted Q-iteration: batch-mode Q-learning with neural networks
- Deep reinforcement learning Q-learning papers
 - Lange, Riedmiller. (2010). Deep auto-encoder neural networks in reinforcement learning: early image-based Q-learning method using autoencoders to construct embeddings
 - Mnih et al. (2013). Human-level control through deep reinforcement learning: Qlearning with convolutional networks for playing Atari.
 - Van Hasselt, Guez, Silver. (2015). Deep reinforcement learning with double Q-learning: a very effective trick to improve performance of deep Q-learning.
 - Lillicrap et al. (2016). Continuous control with deep reinforcement learning: continuous Q-learning with actor network for approximate maximization.
 - Gu, Lillicrap, Stuskever, L. (2016). Continuous deep Q-learning with model-based acceleration: continuous Q-learning with action-quadratic value functions.
 - Wang, Schaul, Hessel, van Hasselt, Lanctot, de Freitas (2016). Dueling network architectures for deep reinforcement learning: separates value and advantage estimation in Q-function.

Review

- Q-learning in practice
 - Replay buffers
 - Target networks
- Generalized fitted Q-iteration
- Double Q-learning
- Multi-step Q-learning
- Q-learning with continuous actions
 - Random sampling
 - Analytic optimization
 - Second "actor" network



Acknowledgements

Slides adapted from

CS 188 UC Berkeley Pieter Abbeel, Dan Klein et al.

CS 285 UC Berkeley Sergey Levine

CSC 498 Univ of Toronto Animesh Garg