CS 8803 Deep Reinforcement Learning

Lec 4: Policy Gradients Fall 2024

Animesh Garg Slides from Sergey Levine

Summary: MDP Equations

• Value iteration equation:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

• Policy evaluation equation:

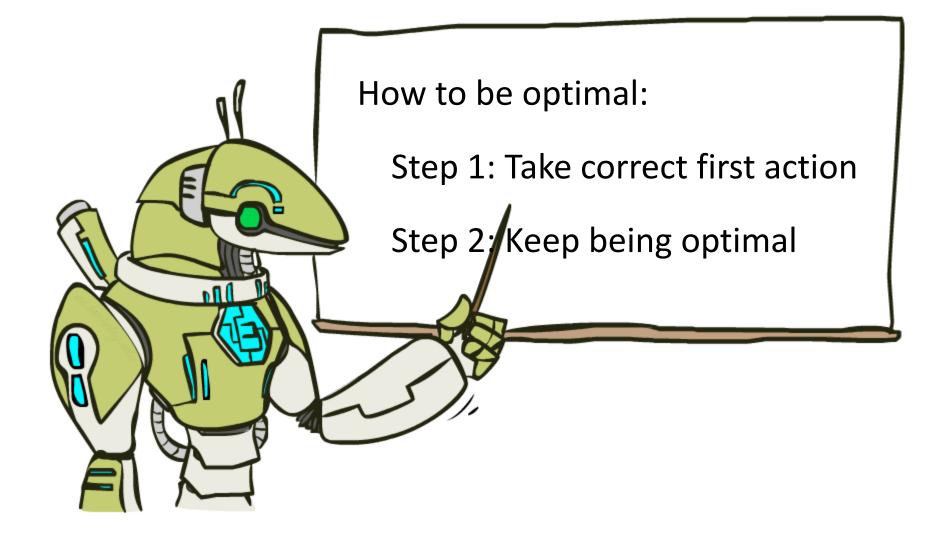
$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

• Policy iteration equation:

٦

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

The Bellman Equations



Convergence when Solving MDPs

- Redefine value update as general Bellman Utility update
 - Recursive update or utility (sum of discounted reward) $V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$ \downarrow $U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum P(s'|s, a) U_i(s')$
- How does this converge?
 - Assume fixed policy $\pi_i(s)$.
 - *R(s)* is the short term reward of being in *s*

Convergence when Solving MDPs

- How does this update rule converge? $U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum P(s'|s, a) U_i(s')$
- Re-write update: $U_{i+1} \leftarrow BU_i$
 - *B* is a linear operator (like a matrix)
 - *U* is a vector
- Interested in delta between Utilities:

$$||BU_{i+1} - BU_i|| \le \gamma ||U_{i+1} - U_i||$$

Bellman Recursion

 $\|U_{i+1} - U_i\|$

v' = Av

Detour: Convergence of Bellman backup

Let $||V - V'|| = \max_{s} |V(s) - V'(s)|$ be the infinity norm

$$\begin{split} \|BV_{k} - BV_{j}\| &= \left\| \max_{a} \left(R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_{k}(s') \right) - \max_{a'} \left(R(s, a') + \gamma \sum_{s' \in S} P(s'|s, a') V_{j}(s') \right) \right\| \\ &\leq \max_{a} \left\| \left(R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_{k}(s') - R(s, a) - \gamma \sum_{s' \in S} P(s'|s, a) V_{j}(s') \right) \right\| \\ &= \max_{a} \left\| \gamma \sum_{s' \in S} P(s'|s, a) (V_{k}(s') - V_{j}(s')) \right\| \\ &\leq \max_{a} \left\| \gamma \sum_{s' \in S} P(s'|s, a) \| V_{k} - V_{j} \| \right) \\ &= \max_{a} \left\| \gamma \| V_{k} - V_{j} \| \sum_{s' \in S} P(s'|s, a) \right\| \\ &= \gamma \| V_{k} - V_{j} \| \end{split}$$

Note: Even if all inequalities are equalities, this is still a contraction if $\gamma < 1$

Convergence when Solving MDPs

• How does this delta converge?

$$|BU_{i+1} - BU_i|| \le \gamma ||U_{i+1} - U_i||$$

- Utility error estimate reduced by γ each iteration:
- Total Utilities are bounded,

$$\sum_{i=0}^{\infty} R_{max} \gamma^i \qquad \pm rac{R_{max}}{(1-\gamma)}$$

- Consider minimum initial error:
 - (Max norm)
- Max error: reduce by discount each step.

$$\|U_0 - U\| \le \frac{2R_{max}}{(1-\gamma)}$$

Utility Error Bound

• Error at step 0: $\|U_0 - U\| \leq \frac{2R_{max}}{(1 - \gamma)}$

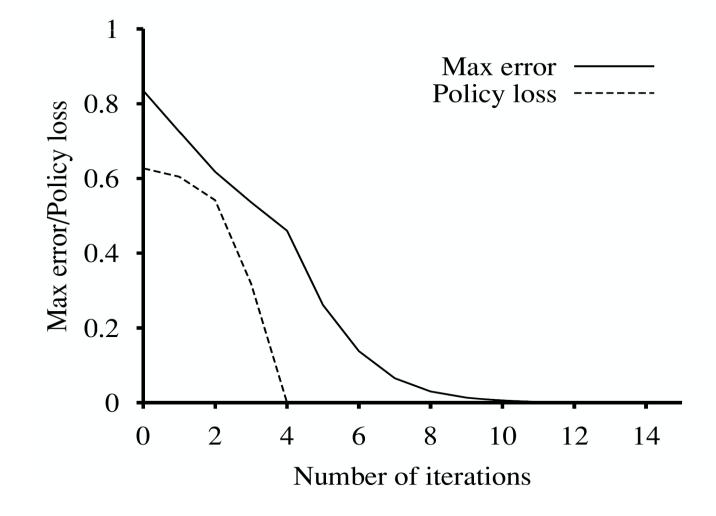
• Error at step N:
$$\|U_N - U\| = \gamma^N \cdot \frac{2R_{max}}{(1 - \gamma)} < \epsilon$$

• Steps for error below ϵ :

$$N = \frac{\log\left(\frac{2R_{max}}{\epsilon(1-\gamma)}\right)}{\log\left(\frac{1}{\gamma}\right)}$$

MDP Convergence Visualized

- Value iteration converges exponentially (with discount factor)
- Policy iteration will converge linearly to 0.



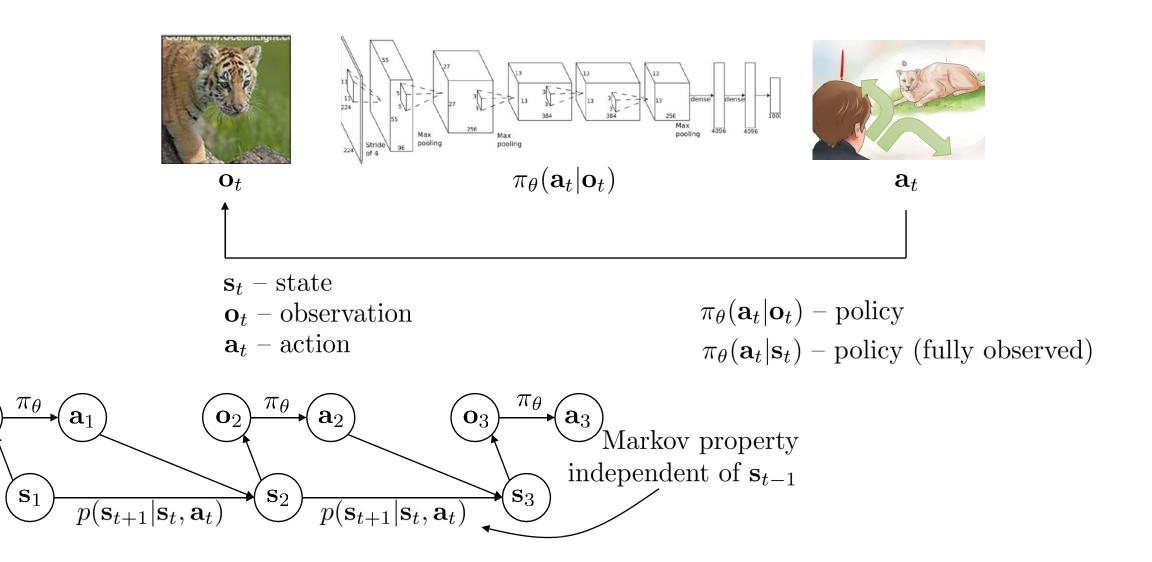
Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions

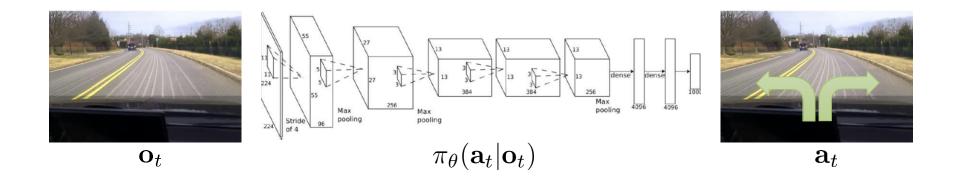
Definitions

Terminology & notation

O₁

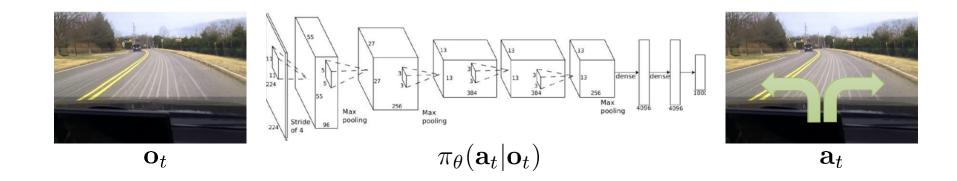


Imitation Learning





Reward functions



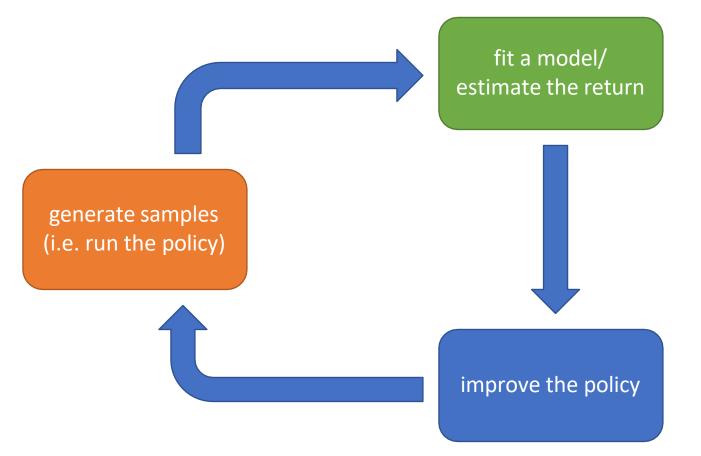
which action is better or worse?

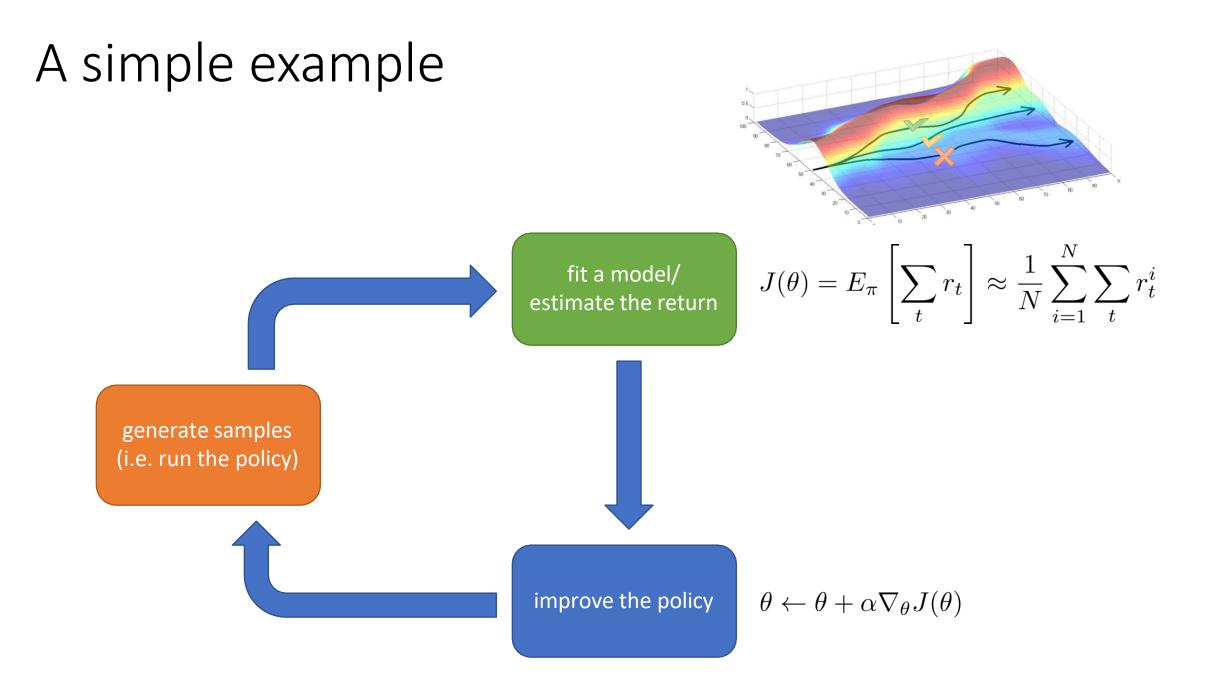
 $r(\mathbf{s}, \mathbf{a})$: reward function tells us which states and actions are better s, a, r(s, a), and p(s'|s, a) define Markov decision process

low reward

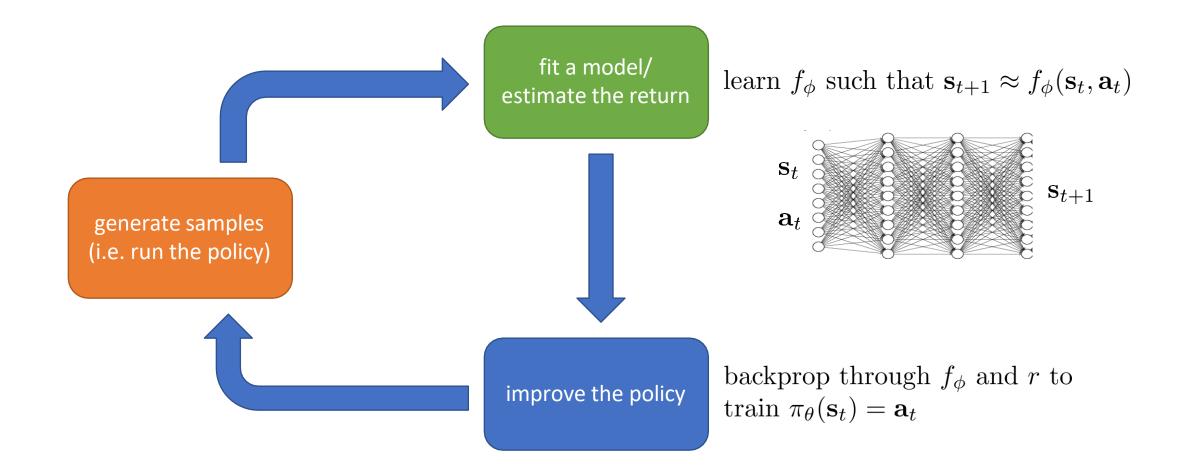
Algorithms

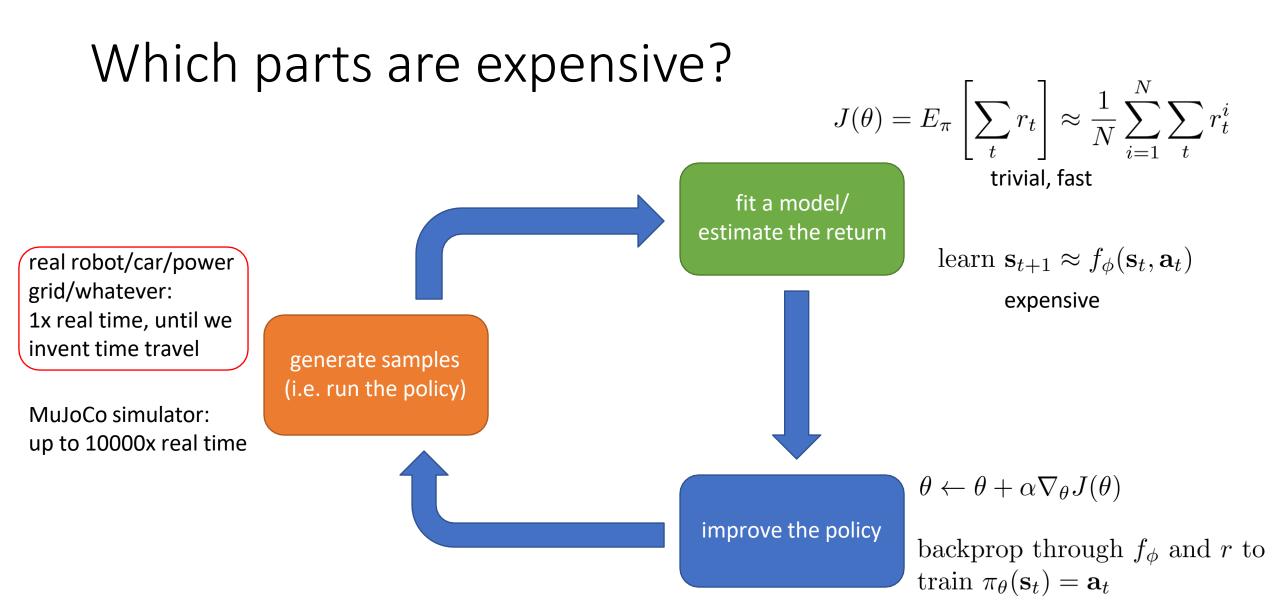
The anatomy of a reinforcement learning algorithm





Another example: RL by backprop





Value Functions

How do we deal with all these expectations?

$$E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

$$E_{\mathbf{s}_{1} \sim p(\mathbf{s}_{1})} \left[E_{\mathbf{a}_{1} \sim \pi(\mathbf{a}_{1} | \mathbf{s}_{1})} \left[r(\mathbf{s}_{1}, \mathbf{a}_{1}) + E_{\mathbf{s}_{2} \sim p(\mathbf{s}_{2} | \mathbf{s}_{1}, \mathbf{a}_{1})} \left[E_{\mathbf{a}_{2} \sim \pi(\mathbf{a}_{2} | \mathbf{s}_{2})} \left[r(\mathbf{s}_{2}, \mathbf{a}_{2}) + \dots | \mathbf{s}_{2} \right] | \mathbf{s}_{1}, \mathbf{a}_{1} \right] | \mathbf{s}_{1} \right] \right]$$

$$what if we knew this part?$$

$$Q(\mathbf{s}_{1}, \mathbf{a}_{1}) = r(\mathbf{s}_{1}, \mathbf{a}_{1}) + E_{\mathbf{s}_{2} \sim p(\mathbf{s}_{2} | \mathbf{s}_{1}, \mathbf{a}_{1})} \left[E_{\mathbf{a}_{2} \sim \pi(\mathbf{a}_{2} | \mathbf{s}_{2})} \left[r(\mathbf{s}_{2}, \mathbf{a}_{2}) + \dots | \mathbf{s}_{2} \right] | \mathbf{s}_{1}, \mathbf{a}_{1} \right]$$

$$E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] = E_{\mathbf{s}_{1} \sim p(\mathbf{s}_{1})} \left[E_{\mathbf{a}_{1} \sim \pi(\mathbf{a}_{1} | \mathbf{s}_{1})} \left[Q(\mathbf{s}_{1}, \mathbf{a}_{1}) | \mathbf{s}_{1} \right] \right]$$

$$easy to modify $\pi_{\theta}(\mathbf{a}_{1} | \mathbf{s}_{1})$ if $Q(\mathbf{s}_{1}, \mathbf{a}_{1})$ is known!

$$example: \pi(\mathbf{a}_{1} | \mathbf{s}_{1}) = 1$$
 if $\mathbf{a}_{1} = \arg \max_{\mathbf{a}_{1}} Q(\mathbf{s}_{1}, \mathbf{a}_{1})$$$

Definition: Q-function

 $Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t \right]: \text{ total reward from taking } \mathbf{a}_t \text{ in } \mathbf{s}_t$

Definition: value function

 $V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^T E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t]$: total reward from \mathbf{s}_t

 $V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi(\mathbf{a}_t | \mathbf{s}_t)}[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)]$

 $E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)}[V^{\pi}(\mathbf{s}_1)]$ is the RL objective!

Using Q-functions and value functions

Idea 1: if we have policy π , and we know $Q^{\pi}(\mathbf{s}, \mathbf{a})$, then we can *improve* π :

set $\pi'(\mathbf{a}|\mathbf{s}) = 1$ if $\mathbf{a} = \arg \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a})$

this policy is at least as good as π (and probably better)!

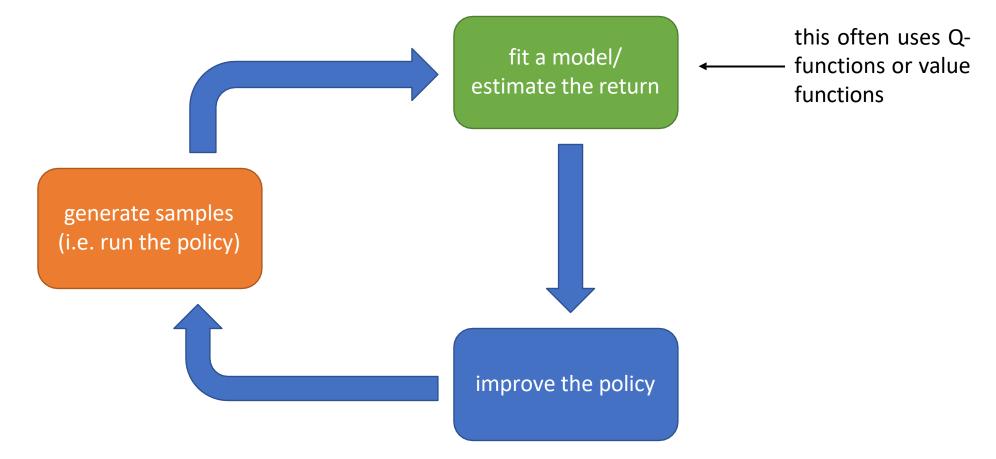
and it doesn't matter what π is

Idea 2: compute gradient to increase probability of good actions **a**:

if $Q^{\pi}(\mathbf{s}, \mathbf{a}) > V^{\pi}(\mathbf{s})$, then **a** is better than average (recall that $V^{\pi}(\mathbf{s}) = E[Q^{\pi}(\mathbf{s}, \mathbf{a})]$ under $\pi(\mathbf{a}|\mathbf{s})$) modify $\pi(\mathbf{a}|\mathbf{s})$ to increase probability of **a** if $Q^{\pi}(\mathbf{s}, \mathbf{a}) > V^{\pi}(\mathbf{s})$

These ideas are *very* important in RL; we'll revisit them again and again!

The anatomy of a reinforcement learning algorithm



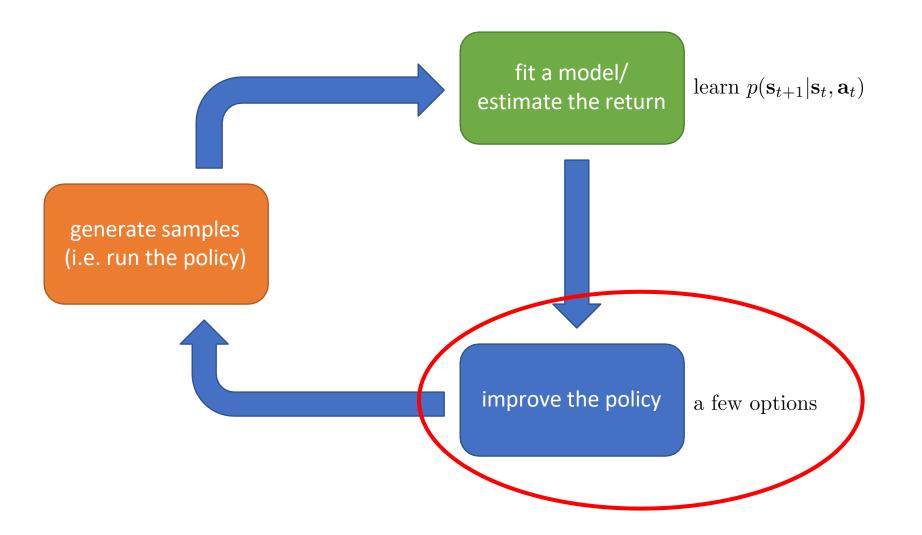
Types of Algorithms

Types of RL algorithms

$$\theta^{\star} = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

- Policy gradients: directly differentiate the above objective
- Value-based: estimate value function or Q-function of the optimal policy (no explicit policy)
- Actor-critic: estimate value function or Q-function of the current policy, use it to improve policy
- Model-based RL: estimate the transition model, and then...
 - Use it for planning (no explicit policy)
 - Use it to improve a policy
 - Something else

Model-based RL algorithms



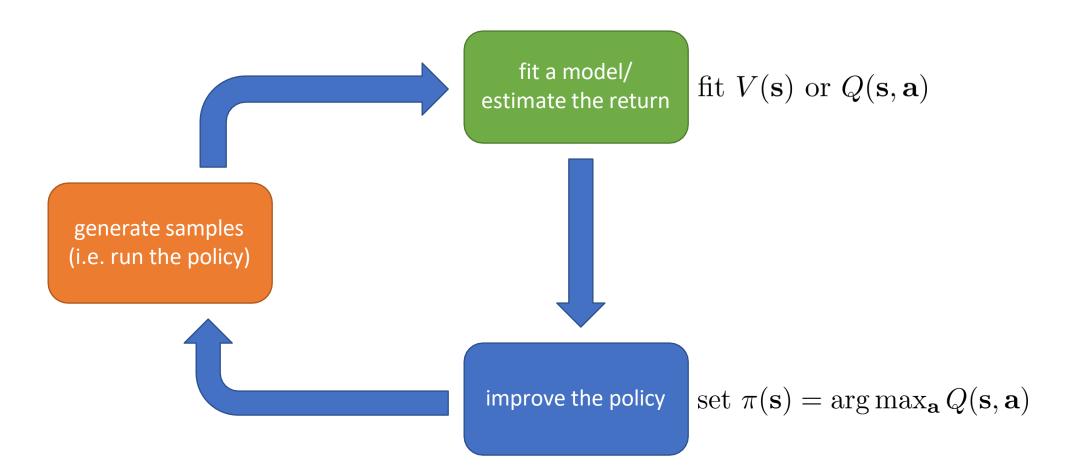
Model-based RL algorithms

improve the policy

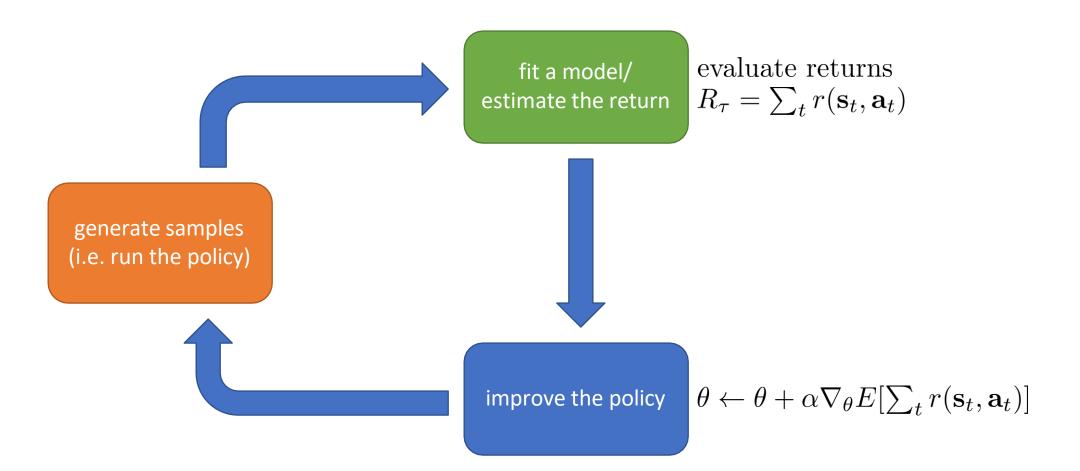
a few options

- 1. Just use the model to plan (no policy)
 - Trajectory optimization/optimal control (primarily in continuous spaces) essentially backpropagation to optimize over actions
 - Discrete planning in discrete action spaces e.g., Monte Carlo tree search
- 1. Backpropagate gradients into the policy
 - Requires some tricks to make it work
- 2. Use the model to learn a value function
 - Dynamic programming
 - Generate simulated experience for model-free learner

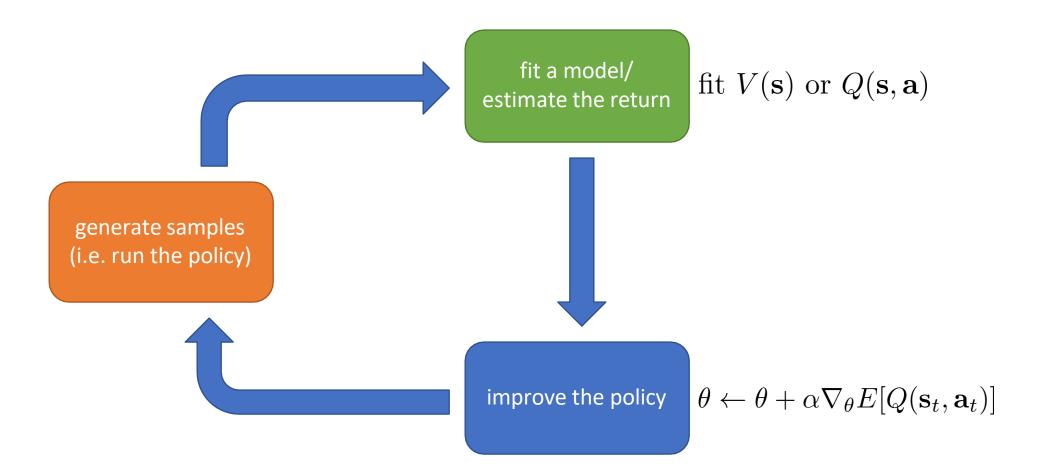
Value function based algorithms



Direct policy gradients



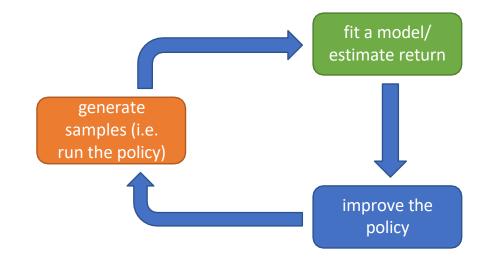
Actor-critic: value functions + policy gradients



Tradeoffs Between Algorithms

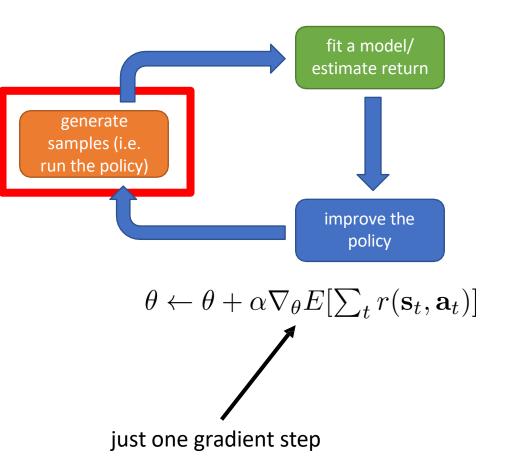
Why so many RL algorithms?

- Different tradeoffs
 - Sample efficiency
 - Stability & ease of use
- Different assumptions
 - Stochastic or deterministic?
 - Continuous or discrete?
 - Episodic or infinite horizon?
- Different things are easy or hard in different settings
 - Easier to represent the policy?
 - Easier to represent the model?

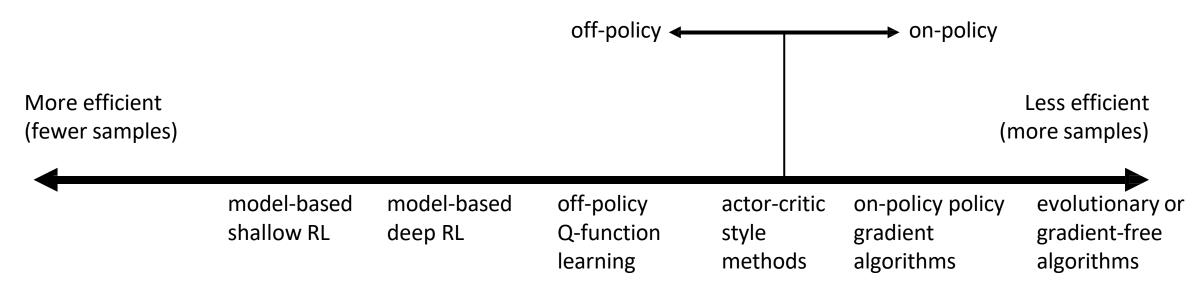


Comparison: sample efficiency

- Sample efficiency = how many samples do we need to get a good policy?
- Most important question: is the algorithm *off policy*?
 - Off policy: able to improve the policy without generating new samples from that policy
 - On policy: each time the policy is changed, even a little bit, we need to generate new samples



Comparison: sample efficiency



Why would we use a *less* efficient algorithm?

Wall clock time is not the same as efficiency!

Comparison: stability and ease of use

- Does it converge?
- And if it converges, to what?
- And does it converge every time?

Why is any of this even a question???

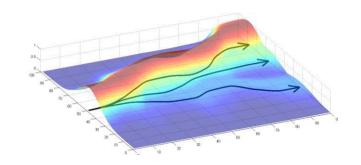
- Supervised learning: almost *always* gradient descent
- Reinforcement learning: often not gradient descent
 - Q-learning: fixed point iteration
 - Model-based RL: model is not optimized for expected reward
 - Policy gradient: *is* gradient descent, but also often the least efficient!

Comparison: stability and ease of use

- Value function fitting
 - At best, minimizes error of fit ("Bellman error")
 - Not the same as expected reward
 - At worst, doesn't optimize anything
 - Many popular deep RL value fitting algorithms are not guaranteed to converge to *anything* in the nonlinear case
- Model-based RL
 - Model minimizes error of fit
 - This will converge
 - No guarantee that better model = better policy
- Policy gradient
 - The only one that actually performs gradient descent (ascent) on the true objective

Comparison: assumptions

- Common assumption #1: full observability
 - Generally assumed by value function fitting methods
 - Can be mitigated by adding recurrence
- Common assumption #2: episodic learning
 - Often assumed by pure policy gradient methods
 - Assumed by some model-based RL methods
- Common assumption #3: continuity or smoothness
 - Assumed by some continuous value function learning methods
 - Often assumed by some model-based RL methods



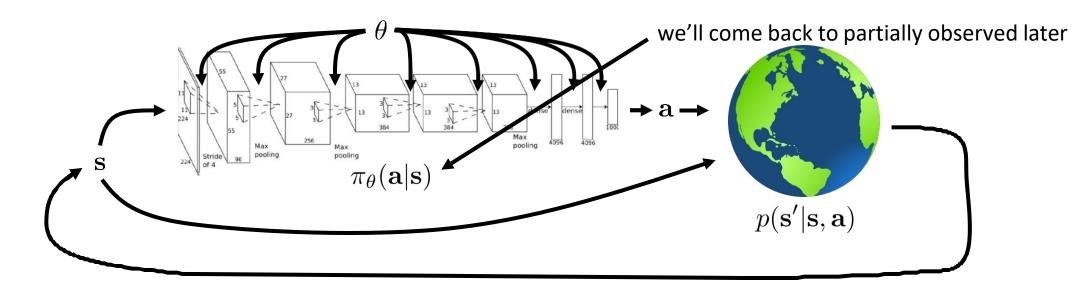
Examples of Algorithms

Examples of specific algorithms

- Value function fitting methods
 - Q-learning, DQN
 - Temporal difference learning
 - Fitted value iteration
- Policy gradient methods
 - REINFORCE
 - Natural policy gradient
 - Trust region policy optimization
- Actor-critic algorithms
 - Asynchronous advantage actor-critic (A3C)
 - Soft actor-critic (SAC)
- Model-based RL algorithms
 - Dyna
 - Guided policy search

We'll learn about most of these in the next few weeks!

The goal of reinforcement learning



$$\underbrace{p_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T})}_{p_{\theta}(\tau)} = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) p(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \mathbf{a}_{t})$$

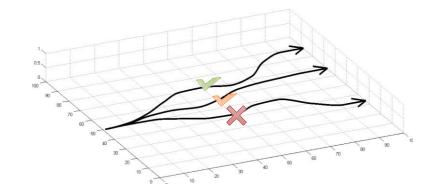
$$\theta^{\star} = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

The goal of reinforcement learning

$$\theta^{\star} = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

Evaluating the objective

$$\theta^{\star} = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$
$$J(\theta)$$



$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

Direct policy differentiation

$$\theta^{\star} = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$
$$J(\theta)$$

a convenient identity
$$p_{\theta}(\tau)\nabla_{\theta}\log p_{\theta}(\tau) = p_{\theta}(\tau)\frac{\nabla_{\theta}p_{\theta}(\tau)}{p_{\theta}(\tau)} = \underline{\nabla_{\theta}p_{\theta}(\tau)}$$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)] = \int p_{\theta}(\tau)r(\tau)d\tau$$
$$\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\nabla_{\theta} J(\theta) = \int \underline{\nabla_{\theta} p_{\theta}(\tau) r(\tau) d\tau} = \int \underline{p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) r(\tau) d\tau} = E_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$$

Direct policy differentiation

$$\theta^{\star} = \arg \max_{\theta} J(\theta)$$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$

$$\log \text{ of both}$$

$$ides \qquad p_{\theta}(\mathbf{x}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T}) = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) p(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\log p_{\theta}(\tau) = \log p(\tau) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) + \log p(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\nabla_{\theta} \left[\log p(\mathbf{s}_{1}) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) + \log p(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$

recall: $J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left| \sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right| \approx \frac{1}{N} \sum_{t} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$ $\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left| \left(\sum_{t=1}^{I} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{I} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right|$ fit a model to estimate return $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{i=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$ generate samples (i.e. run the policy) $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ improve the

policy

REINFORCE algorithm:

1. sample
$$\{\tau^i\}$$
 from $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ (run the policy)
2. $\nabla_{\theta} J(\theta) \approx \sum_i \left(\sum_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^i | \mathbf{s}_t^i) \right) \left(\sum_t r(\mathbf{s}_t^i, \mathbf{a}_t^i) \right)$
3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Evaluating the policy gradient

Understanding Policy Gradients

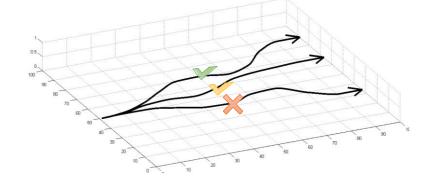
Evaluating the policy gradient

recall:
$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$
what is this?



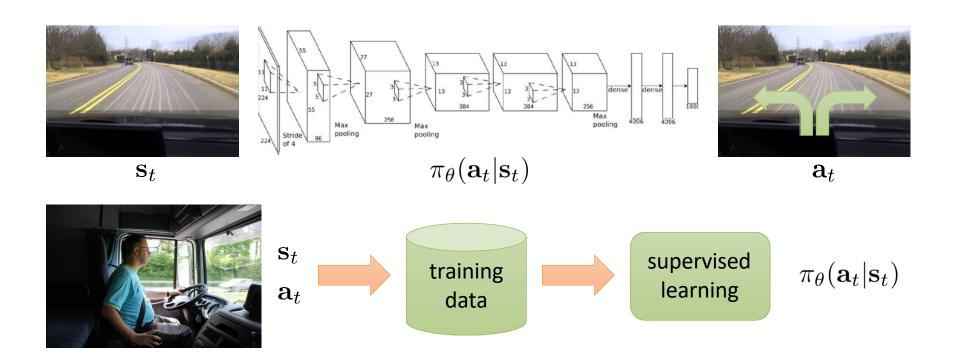


 \mathbf{a}_t

Comparison to maximum likelihood

policy gradient:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

maximum likelihood:
$$\nabla_{\theta} J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right)$$



Example: Gaussian policies

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

example: $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) = \mathcal{N}(f_{\text{neural network}}(\mathbf{s}_t); \Sigma)$ $\log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) = -\frac{1}{2} ||f(\mathbf{s}_t) - \mathbf{a}_t||_{\Sigma}^2 + \text{const}$ $\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) = -\frac{1}{2} \Sigma^{-1} (f(\mathbf{s}_t) - \mathbf{a}_t) \frac{df}{d\theta}$

REINFORCE algorithm:

1. sample
$$\{\tau^i\}$$
 from $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ (run it on the robot)
2. $\nabla_{\theta} J(\theta) \approx \sum_i \left(\sum_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^i | \mathbf{s}_t^i) \right) \left(\sum_t r(\mathbf{s}_t^i, \mathbf{a}_t^i) \right)$
3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

What did we just do?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \underbrace{\nabla_{\theta} \log \pi_{\theta}(\tau_{i}) r(\tau_{i})}_{T}$$
$$\sum_{t=1}^{T} \nabla_{\theta} \log_{\theta} \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t})$$
good stuff is made more likely

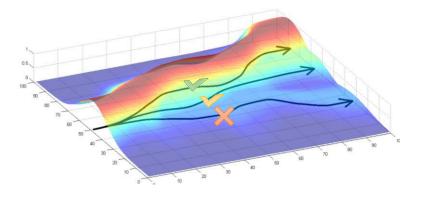
bad stuff is made less likely

simply formalizes the notion of "trial and error"!

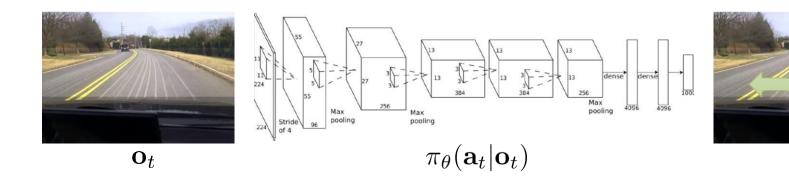
REINFORCE algorithm:

1. sample
$$\{\tau^i\}$$
 from $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ (run it on the robot)
2. $\nabla_{\theta} J(\theta) \approx \sum_i \left(\sum_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^i | \mathbf{s}_t^i) \right) \left(\sum_t r(\mathbf{s}_t^i, \mathbf{a}_t^i) \right)$
3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

maximum likelihood:
$$\nabla_{\theta} J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau_i)$$



Partial observability



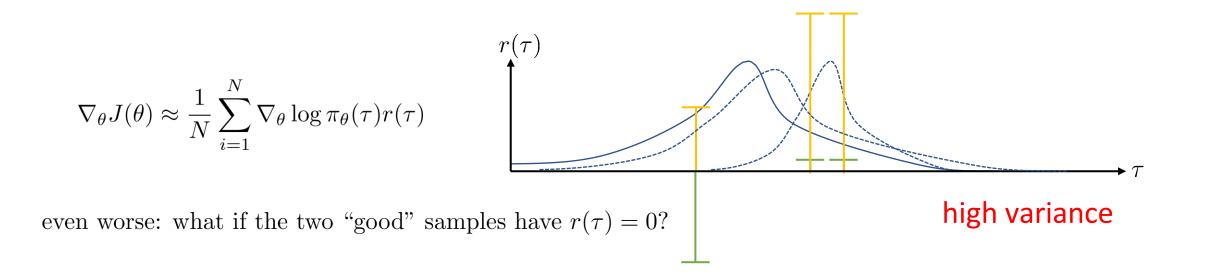
 \mathbf{a}_t

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{o}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

Markov property is not actually used!

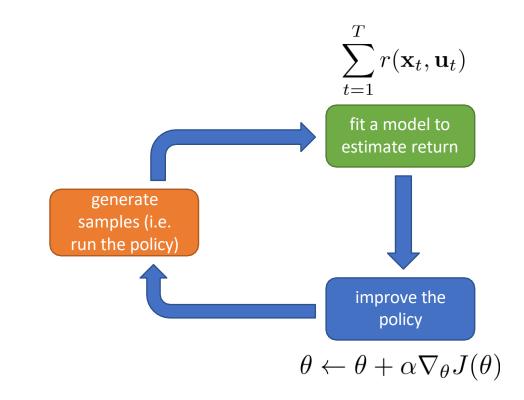
Can use policy gradient in partially observed MDPs without modification

What is wrong with the policy gradient?



Review

- Evaluating the RL objective
 - Generate samples
- Evaluating the policy gradient
 - Log-gradient trick
 - Generate samples
- Understanding the policy gradient
 - Formalization of trial-and-error
- Partial observability
 - Works just fine
- What is wrong with policy gradient?



Reducing Variance

Reducing variance

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

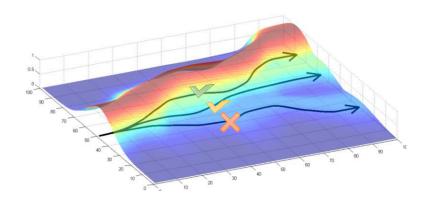
Causality: policy at time t' cannot affect reward at time t when t < t'

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{\substack{t' \in \mathbf{t} \\ \mathbf{t}' \in \mathbf{t}}}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

"reward to go"
 $\hat{Q}_{i,t}$

Baselines

a convenient identity $p_{ heta}(au)
abla_{ heta} \log p_{ heta}(au) =
abla_{ heta} p_{ heta}(au)$



$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log p_{\theta}(\tau) [r(\tau) - b]$$
$$b = \frac{1}{N} \sum_{i=1}^{N} r(\tau) \qquad \text{but... are we allowed to do that??}$$

$$E[\nabla_{\theta} \log p_{\theta}(\tau)b] = \int p_{\theta}(\tau)\nabla_{\theta} \log p_{\theta}(\tau)b \, d\tau = \int \nabla_{\theta} p_{\theta}(\tau)b \, d\tau = b\nabla_{\theta} \int p_{\theta}(\tau)d\tau = b\nabla_{\theta} 1 = 0$$

subtracting a baseline is *unbiased* in expectation!

average reward is *not* the best baseline, but it's pretty good!

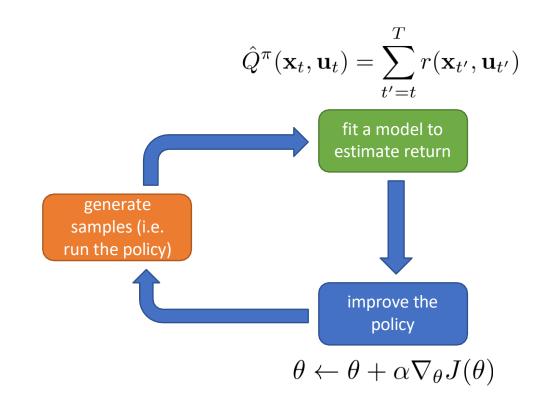
Analyzing variance

can we write down the variance?

 $\operatorname{Var}[x] = E[x^2] - E[x]^2$ $\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) (r(\tau) - b)]$ $\operatorname{Var} = E_{\tau \sim p_{\theta}(\tau)} [(\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau) - b))^{2}] - E_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau) - b)]^{2}$ this bit is just $E_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$ (baselines are unbiased in expectation) $\frac{d\operatorname{Var}}{db} = \frac{d}{db}E[g(\tau)^2(r(\tau)-b)^2] = \frac{d}{db}\left(E[g(\tau)^2r(\tau)^2] - 2E[g(\tau)^2r(\tau)b] + b^2E[g(\tau)^2]\right)$ $= -2E[q(\tau)^{2}r(\tau)] + 2bE[q(\tau)^{2}] = 0$ This is just expected reward, but weighted $b = \frac{E[g(\tau)^2 r(\tau)]}{E[g(\tau)^2]} \quad \longleftarrow \quad$ by gradient magnitudes!

Review

- The high variance of policy gradient
- Exploiting causality
 - Future doesn't affect the past
- Baselines
 - Unbiased!
- Analyzing variance
 - Can derive optimal baselines



Off-Policy Policy Gradients

Policy gradient is on-policy

 $\theta^{\star} = \arg \max_{\theta} J(\theta)$

 $J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$$
this is trouble...

- Neural networks change only a little bit with each gradient step
- On-policy learning can be extremely inefficient!

REINFORCE algorithm: 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ (run it on the robot) 2. $\nabla_{\theta} J(\theta) \approx \sum_i \left(\sum_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^i | \mathbf{s}_t^i) \right) \left(\sum_t r(\mathbf{s}_t^i, \mathbf{a}_t^i) \right)$ 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Off-policy learning & importance sampling

 $\theta^{\star} = \arg \max_{\theta} J(\theta)$

 $J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$

what if we don't have samples from $p_{\theta}(\tau)$? (we have samples from some $\bar{p}(\tau)$ instead)

$$J(\theta) = E_{\tau \sim \bar{p}(\tau)} \left[\frac{p_{\theta}(\tau)}{\bar{p}(\tau)} r(\tau) \right]$$
$$p_{\theta}(\tau) = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\frac{p_{\theta}(\tau)}{\bar{p}(\tau)} = \frac{p(\mathbf{s}_1) \prod_{t=1}^T \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)}{p(\mathbf{s}_1) \prod_{t=1}^T \bar{\pi}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)} = \frac{\prod_{t=1}^T \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}{\prod_{t=1}^T \bar{\pi}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)}$$

importance sampling	
$E_{x \sim p(x)}[f(x)] = \int p(x)f(x)dx$	
$= \int \frac{q(x)}{q(x)} p(x) f(x) dx$	
$= \int q(x) \frac{p(x)}{q(x)} f(x) dx$	
$= E_{x \sim q(x)} \left[\frac{p(x)}{q(x)} f(x) \right]$	

Deriving the policy gradient with IS

 $\theta^{\star} = \arg\max_{\theta} J(\theta)$

 $J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$

can we estimate the value of some *new* parameters θ' ?

 $J(\theta') = E_{\tau \sim p_{\theta}(\tau)} \begin{bmatrix} p_{\theta'}(\tau) \\ p_{\theta}(\tau) \end{bmatrix}$ the only bit that depends on θ'

$$\nabla_{\theta'} J(\theta') = E_{\tau \sim p_{\theta}(\tau)} \left[\frac{\nabla_{\theta'} p_{\theta'}(\tau)}{p_{\theta}(\tau)} r(\tau) \right] = E_{\tau \sim p_{\theta}(\tau)} \left[\frac{p_{\theta'}(\tau)}{p_{\theta}(\tau)} \nabla_{\theta'} \log p_{\theta'}(\tau) r(\tau) \right]$$

now estimate locally, at $\theta = \theta'$: $\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$

a convenient identity

$$p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) = \nabla_{\theta} p_{\theta}(\tau)$$

The off-policy policy gradient

A first-order approximation for IS (preview)

$$\nabla_{\theta'} J(\theta') = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_t | \mathbf{s}_t) \left(\prod_{t'=1}^{t} \frac{\pi_{\theta'}(\mathbf{a}_{t'} | \mathbf{s}_{t'})}{\pi_{\theta}(\mathbf{a}_{t'} | \mathbf{s}_{t'})} \right) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right) \right]$$
exponential in *T*...

let's write the objective a bit differently...

on-policy policy gradient:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{Q}_{i,t}$$

off-policy policy gradient: $\nabla_{\theta'} J(\theta') \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\pi_{\theta'}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})}{\pi_{\theta}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{Q}_{i,t}$
We'll see why this is
reasonable
later in the course! ignore this part

Implementing Policy Gradients

Policy gradient with automatic differentiation

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{Q}_{i,t}}{\mathbf{1}}$$
 pretty inefficient to compute these explicitly!

How can we compute policy gradients with automatic differentiation?

We need a graph such that its gradient is the policy gradient!

maximum likelihood:
$$\nabla_{\theta} J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \qquad J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t})$$

Just implement "pseudo-loss" as a weighted maximum likelihood:

$$\tilde{J}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{Q}_{i,t}$$
cross entropy (discrete) or squared error (Gaussian)

Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Maximum likelihood:

```
# Given:
# actions - (N*T) x Da tensor of actions
# states - (N*T) x Ds tensor of states
# Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits)
loss = tf.reduce_mean(negative_likelihoods)
gradients = loss.gradients(loss, variables)
```

Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

```
Policy gradient:
```

```
# Given:
# actions - (N*T) x Da tensor of actions
# states - (N*T) x Ds tensor of states
# q_values - (N*T) x 1 tensor of estimated state-action values
# Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits)
weighted_negative_likelihoods = tf.multiply(negative_likelihoods, q_values)
loss = tf.reduce_mean(weighted_negative_likelihoods)
gradients = loss.gradients(loss, variables)
```

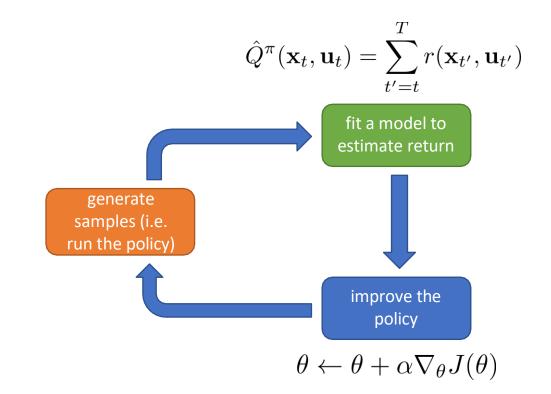
$$\tilde{J}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t} | \hat{Q}_{i,t}) \mathbf{q_values}$$

Policy gradient in practice

- Remember that the gradient has high variance
 - This isn't the same as supervised learning!
 - Gradients will be really noisy!
- Consider using much larger batches
- Tweaking learning rates is very hard
 - Adaptive step size rules like ADAM can be OK-ish
 - We'll learn about policy gradient-specific learning rate adjustment methods later!

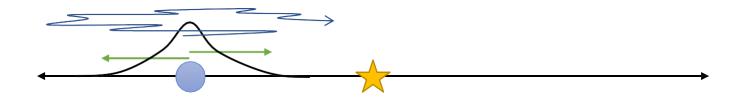
Review

- Policy gradient is on-policy
- Can derive off-policy variant
 - Use importance sampling
 - Exponential scaling in T
 - Can ignore state portion (approximation)
- Can implement with automatic differentiation – need to know what to backpropagate
- Practical considerations: batch size, learning rates, optimizers

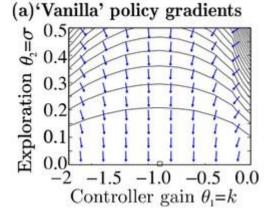


Advanced Policy Gradients

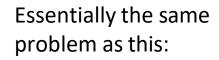
What *else* is wrong with the policy gradient?

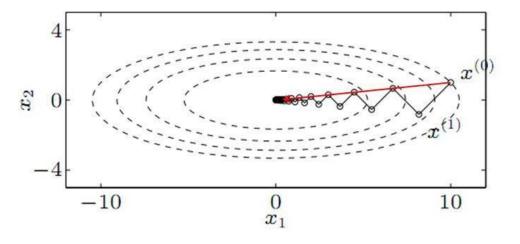


$$r(\mathbf{s}_t, \mathbf{a}_t) = -\mathbf{s}_t^2 - \mathbf{a}_t^2$$
$$\log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) = -\frac{1}{2\sigma^2} (k\mathbf{s}_t - \mathbf{a}_t)^2 + \text{const} \qquad \theta = (k, \sigma)$$



(image from Peters & Schaal 2008)





Covariant/natural policy gradient

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta) \qquad \qquad \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$$

some parameters change probabilities a lot more than others!

$$\theta' \leftarrow \arg \max_{\theta'} (\theta' - \theta)^T \nabla_{\theta} J(\theta) \text{ s.t. } \frac{\|\theta' - \theta\|^2 \le \epsilon}{\|\theta\|^2 \le \epsilon}$$

controls how far we go

can we *rescale* the gradient so this doesn't happen?

$$\theta' \leftarrow \arg \max_{\theta'} (\theta' - \theta)^T \nabla_{\theta} J(\theta) \text{ s.t. } D(\pi_{\theta'}, \pi_{\theta}) \leq \epsilon$$

parameterization-independent divergence measure usually KL-divergence: $D_{\text{KL}}(\pi_{\theta'} || \pi_{\theta}) = E_{\pi_{\theta'}}[\log \pi_{\theta} - \log \pi_{\theta'}]$

 $D_{\mathrm{KL}}(\pi_{\theta'} \| \pi_{\theta}) \approx (\theta' - \theta)^T \mathbf{F}(\theta' - \theta) \qquad \mathbf{F} = E_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta} (\mathbf{a} | \mathbf{s}) \nabla_{\theta} \log \pi_{\theta} (\mathbf{a} | \mathbf{s})^T]$ Fisher-information matrix can estimate with samples



Covariant/natural policy gradient

 $D_{\mathrm{KL}}(\pi_{\theta'} \| \theta_{\pi}) \approx (\theta' - \theta)^T \mathbf{F}(\theta' - \theta) \qquad \mathbf{F} = E_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(\mathbf{a} | \mathbf{s}) \nabla_{\theta} \log \pi_{\theta}(\mathbf{a} | \mathbf{s})^T]$

 $\theta' \leftarrow \arg \max_{\theta'} (\theta' - \theta)^T \nabla_{\theta} J(\theta) \text{ s.t. } D(\pi_{\theta'}, \pi_{\theta}) \leq \epsilon$

 $\theta \leftarrow \theta + \alpha \mathbf{F}^{-1} \nabla_{\theta} J(\theta)$

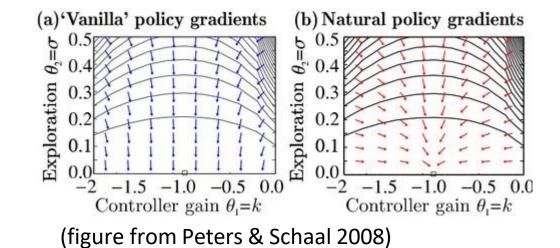
natural gradient: pick α

trust region policy optimization: pick ϵ

can solve for optimal α while solving $\mathbf{F}^{-1}\nabla_{\theta}J(\theta)$

conjugate gradient works well for this

see Schulman, L., Moritz, Jordan, Abbeel (2015) Trust region policy optimization



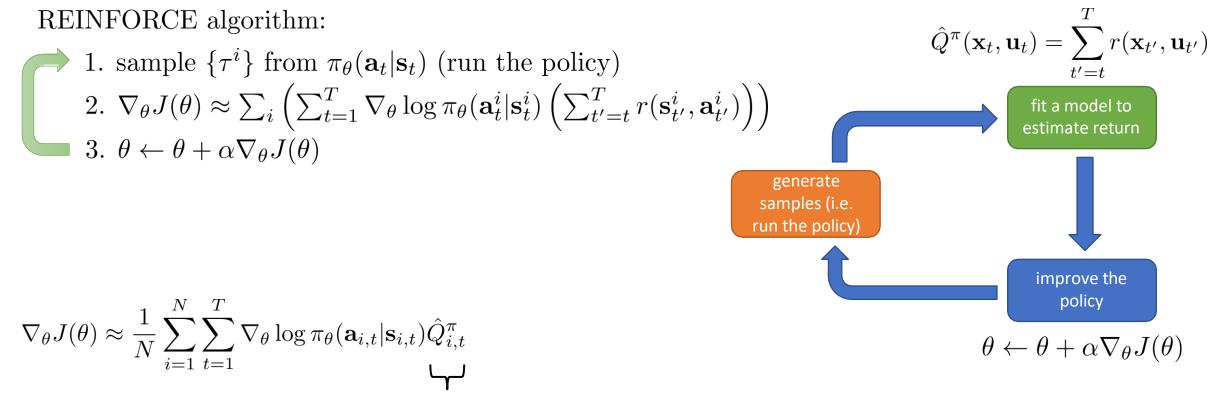
Advanced policy gradient topics

- What more is there?
- Next time: introduce value functions and Q-functions
- Later in the class: more on natural gradient and automatic step size adjustment

Policy gradients suggested readings

- Classic papers
 - Williams (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning: introduces REINFORCE algorithm
 - Baxter & Bartlett (2001). Infinite-horizon policy-gradient estimation: temporally decomposed policy gradient (not the first paper on this! see actor-critic section later)
 - Peters & Schaal (2008). Reinforcement learning of motor skills with policy gradients: very accessible overview of optimal baselines and natural gradient
- Deep reinforcement learning policy gradient papers
 - Levine & Koltun (2013). Guided policy search: deep RL with importance sampled policy gradient (unrelated to later discussion of guided policy search)
 - Schulman, L., Moritz, Jordan, Abbeel (2015). Trust region policy optimization: deep RL with natural policy gradient and adaptive step size
 - Schulman, Wolski, Dhariwal, Radford, Klimov (2017). Proximal policy optimization algorithms: deep RL with importance sampled policy gradient

Recap: policy gradients



"reward to go"

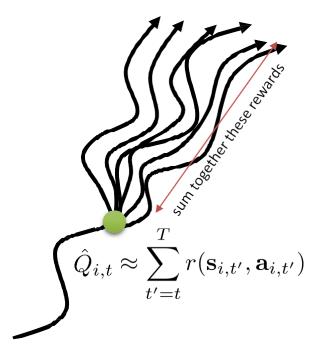
Improving the policy gradient

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{\substack{t'=1 \\ t'=1}}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

"reward to go"
 $\hat{Q}_{i,t}$

 $\hat{Q}_{i,t}$: estimate of expected reward if we take action $\mathbf{a}_{i,t}$ in state $\mathbf{s}_{i,t}$ can we get a better estimate?

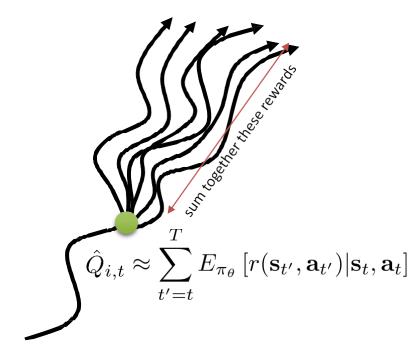
$$Q(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t} \right]: \text{ true } expected \text{ reward-to-go}$$
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$



What about the baseline?

 $Q(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t}]: \text{ true expected reward-to-go}$ $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) (Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) - V(\mathbf{s}_{i,t}))$ $b_{t} = \frac{1}{N} \sum_{i} Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \quad \text{average what}?$

 $V(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_\theta(\mathbf{a}_t | \mathbf{s}_t)}[Q(\mathbf{s}_t, \mathbf{a}_t)]$



State & state-action value functions

 $Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$: total reward from taking \mathbf{a}_t in \mathbf{s}_t

 $V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)]$: total reward from \mathbf{s}_t

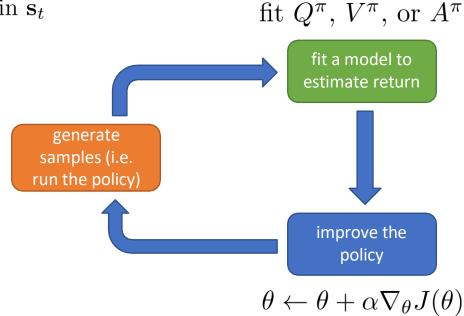
 $A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) - V^{\pi}(\mathbf{s}_t)$: how much better \mathbf{a}_t is

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) A^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

the better this estimate, the lower the variance

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=1}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) - b \right)$$

unbiased, but high variance single-sample estimate



Value function fitting

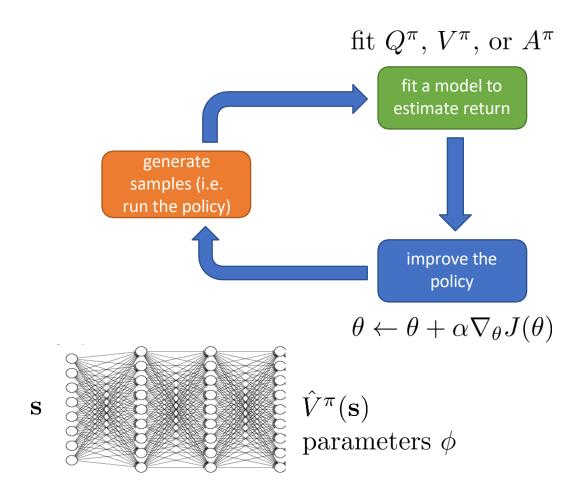
$$Q^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t} \right]$$
$$V^{\pi}(\mathbf{s}_{t}) = E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t})} [Q^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t})]$$
$$A^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = Q^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) - V^{\pi}(\mathbf{s}_{t})$$
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) A^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

fit what to what?

 $Q^{\pi}, V^{\pi}, A^{\pi}?$

$$Q^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \sum_{t'=t+1}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t} \right]$$
$$A^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) \approx r(\mathbf{s}_{t}, \mathbf{a}_{t}) + V^{\pi}(\mathbf{s}_{t+1}) - V^{\pi}(\mathbf{s}_{t+1})$$

let's just fit $V^{\pi}(\mathbf{s})!$



fit V^{π}

policy

Policy evaluation

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right]$$

 $J(\theta) = E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)}[V^{\pi}(\mathbf{s}_1)]$

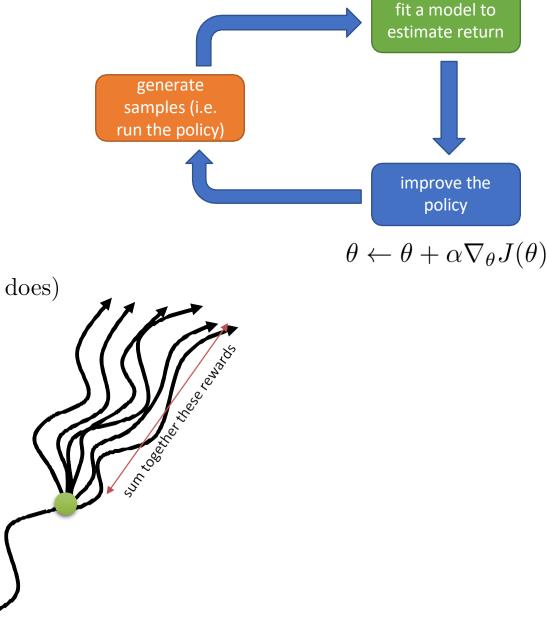
how can we perform policy evaluation?

Monte Carlo policy evaluation (this is what policy gradient does)

$$V^{\pi}(\mathbf{s}_t) \approx \sum_{t'=t}^T r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$$

$$V^{\pi}(\mathbf{s}_t) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$$

(requires us to reset the simulator)



Monte Carlo evaluation with function approximation

$$V^{\pi}(\mathbf{s}_t) \approx \sum_{t'=t}^T r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$$

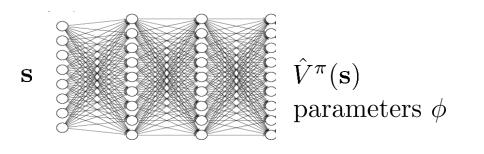
not as good as this: $V^{\pi}(\mathbf{s}_t) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$

but still pretty good!

training data:
$$\left\{ \left(\mathbf{s}_{i,t}, \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) \right\}$$

supervised regression:
$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

the same function should fit multiple samples!



Can we do better?

ideal target:
$$y_{i,t} = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{i,t} \right] \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + V^{\pi}(\mathbf{s}_{i,t+1}) \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}^{\pi}_{\phi}(\mathbf{s}_{i,t+1})$$

Monte Carlo target: $y_{i,t} = \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'})$ directly use previous fitted

directly use previous fitted value function!

training data:
$$\left\{ \left(\mathbf{s}_{i,t}, r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) \right) \right\}$$

supervised regression:
$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

sometimes referred to as a "bootstrapped" estimate

Policy evaluation examples

TD-Gammon, Gerald Tesauro 1992

AlphaGo, Silver et al. 2016

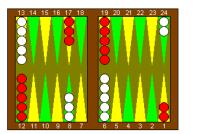
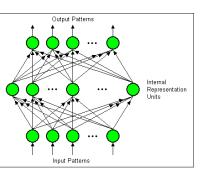
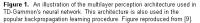


Figure 2. An illustration of the normal opening position in backgammon. TD-Gammon has sparked a near-universal conversion in the way experts play certain opening rolls. For example, with an opening roll of 4-1, most players have now switched from the traditional move of 13-9, 6-5, to TD-Gammon's preference, 13-9, 24-23. TD-Gammon's analysis is given in Table 2.





reward: game outcome

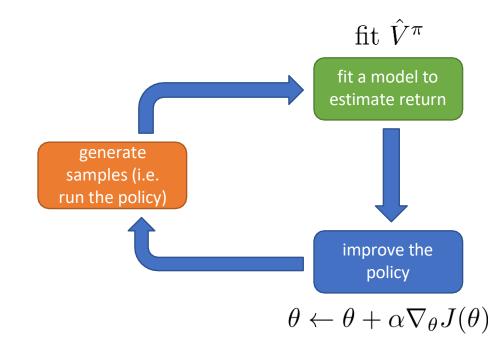
value function $\hat{V}^{\pi}_{\phi}(\mathbf{s}_t)$: expected outcome given board state reward: game outcome

value function $\hat{V}^{\pi}_{\phi}(\mathbf{s}_t)$: expected outcome given board state

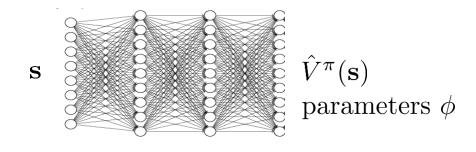
From Evaluation to Actor Critic

An actor-critic algorithm

batch actor-critic algorithm:



$$y_{i,t} \approx \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'})$$
$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$



$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right]$$

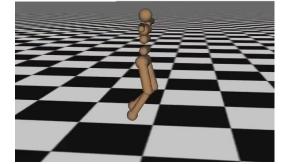
Aside: discount factors

$$y_{i,t} \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}^{\pi}_{\phi}(\mathbf{s}_{i,t+1})$$
$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}^{\pi}_{\phi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

what if T (episode length) is ∞ ? \hat{V}^{π}_{ϕ} can get infinitely large in many cases

episodic tasks

Iteration 2000



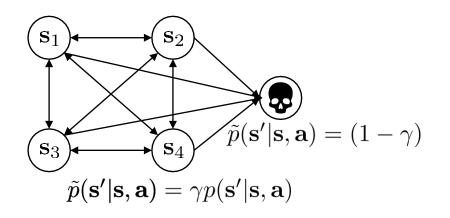
continuous/cyclical tasks

simple trick: better to get rewards sooner than later

$$y_{i,t} \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1})$$

$$\uparrow$$
discount factor $\gamma \in [0, 1]$ (0.99 works well)

 γ changes the MDP:



Aside: discount factors for policy gradients

$$y_{i,t} \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1})$$

$$\hat{\mathcal{L}}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$
with critic:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t}) \right)$$

what about (Monte Carlo) policy gradients?

option 1:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
 not the same!
option 2:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} \gamma^{t-1} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
(later steps matter less)

Which version is the right one?

option 1:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
 this is what we actually use...
why?
option 2: $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$ leteration 2000
later steps don't matter if you're dead!
 $\mathbf{s}_{1} + \mathbf{s}_{2} + \mathbf{s}_{3} + \mathbf{s}_{1} + \mathbf{s}_{1} + \mathbf{s}_{2} + \mathbf{s}_{2} + \mathbf{s}_{2} + \mathbf{s}_{3} + \mathbf{s}_{4} + \mathbf{s}_{3} + \mathbf{s}_{4} +$

Further reading: Philip Thomas, Bias in natural actor-critic algorithms. ICML 2014

Actor-critic algorithms (with discount)

batch actor-critic algorithm:

1. sample $\{\mathbf{s}_i, \mathbf{a}_i\}$ from $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ (run it on the robot) 2. fit $\hat{V}^{\pi}_{\phi}(\mathbf{s})$ to sampled reward sums 3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \hat{V}^{\pi}_{\phi}(\mathbf{s}'_i) - \hat{V}^{\pi}_{\phi}(\mathbf{s}_i)$ 4. $\nabla_{\theta} J(\theta) \approx \sum_i \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_i|\mathbf{s}_i) \hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i)$ 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

online actor-critic algorithm:

1. take action
$$\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$$
, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$
3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') - \hat{V}_{\phi}^{\pi}(\mathbf{s})$
4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$
5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Acknowledgements

Slides adapted from

CS 188 UC Berkeley Pieter Abbeel, Dan Klein et al.

CS 285 UC Berkeley Sergey Levine

CSC 498 Univ of Toronto Animesh Garg