
CS 8803
Deep Reinforcement Learning

Lec 3: Intro to RL
Fall 2024

Animesh Garg

Summary: MDP Equations

• Value iteration equation:

• Policy evaluation equation:

• Policy iteration equation:

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

Convergence when Solving MDPs

• Redefine value update as general Bellman Utility update
• Recursive update or utility (sum of discounted reward)

• How does this converge?
• Assume fixed policy 𝜋𝑖(𝑠).

• R(s) is the short term reward of being in s

Convergence when Solving MDPs

• How does this update rule converge?

• Re-write update:
• B is a linear operator (like a matrix)

• U is a vector

• Interested in delta between Utilities:

Bellman
Recursion

Detour: Convergence of Bellman backup

Convergence when Solving MDPs

• How does this delta converge?

• Utility error estimate reduced by 𝛾 each iteration:

• Total Utilities are bounded,

• Consider minimum initial error:
• (Max norm)

• Max error: reduce by discount each step.

Utility Error Bound

• Error at step 0:

• Error at step N:

• Steps for error below 𝜖:

MDP Convergence Visualized

• Value iteration converges
exponentially (with
discount factor)

• Policy iteration will
converge linearly to 0.

Summary: MDP Algorithms

• So you want to….
• Compute optimal values: use value iteration or policy iteration

• Compute values for a particular policy: use policy evaluation

• Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!
• They basically are – they are all variations of Bellman updates

• They all use one-step lookahead expectimax fragments

• They differ only in whether we plug in a fixed policy or max over actions

Definitions

1. run away

2. ignore

3. pet

Terminology & notation

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Imitation Learning

Reward functions

Algorithms

The anatomy of a reinforcement learning
algorithm

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

A simple example

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

Another example: RL by backprop

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

Which parts are expensive?

generate samples
(i.e. run the policy)

trivial, fast
fit a model/

estimate the return

improve the policy

real robot/car/power
grid/whatever:
1x real time, until we
invent time travel

MuJoCo simulator:
up to 10000x real time

expensive

Value Functions

How do we deal with all these expectations?

what if we knew this part?

Definition: Q-function

Definition: value function

Using Q-functions and value functions

The anatomy of a reinforcement learning
algorithm

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

this often uses Q-
functions or value
functions

Types of Algorithms

Types of RL algorithms

• Policy gradients: directly differentiate the above objective

• Value-based: estimate value function or Q-function of the optimal policy
(no explicit policy)

• Actor-critic: estimate value function or Q-function of the current policy,
use it to improve policy

• Model-based RL: estimate the transition model, and then…
• Use it for planning (no explicit policy)

• Use it to improve a policy

• Something else

Model-based RL algorithms

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

Model-based RL algorithms

improve the policy

1. Just use the model to plan (no policy)
• Trajectory optimization/optimal control (primarily in continuous spaces) –

essentially backpropagation to optimize over actions
• Discrete planning in discrete action spaces – e.g., Monte Carlo tree search

1. Backpropagate gradients into the policy
• Requires some tricks to make it work

2. Use the model to learn a value function
• Dynamic programming
• Generate simulated experience for model-free learner

Value function based algorithms

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

Direct policy gradients

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

Actor-critic: value functions + policy gradients

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

Tradeoffs Between Algorithms

Why so many RL algorithms?

• Different tradeoffs
• Sample efficiency

• Stability & ease of use

• Different assumptions
• Stochastic or deterministic?

• Continuous or discrete?

• Episodic or infinite horizon?

• Different things are easy or hard in
different settings
• Easier to represent the policy?

• Easier to represent the model?

generate
samples (i.e.

run the policy)

fit a model/
estimate return

improve the
policy

Comparison: sample efficiency

• Sample efficiency = how many samples
do we need to get a good policy?

• Most important question: is the
algorithm off policy?
• Off policy: able to improve the policy

without generating new samples from that
policy

• On policy: each time the policy is changed,
even a little bit, we need to generate new
samples

generate
samples (i.e.

run the policy)

fit a model/
estimate return

improve the
policy

just one gradient step

Comparison: sample efficiency

More efficient
(fewer samples)

Less efficient
(more samples)

on-policyoff-policy

Why would we use a less efficient algorithm?

Wall clock time is not the same as efficiency!

evolutionary or
gradient-free
algorithms

on-policy policy
gradient
algorithms

actor-critic
style
methods

off-policy
Q-function
learning

model-based
deep RL

model-based
shallow RL

Comparison: stability and ease of use

• Does it converge?

• And if it converges, to what?

• And does it converge every time?

Why is any of this even a question???

• Supervised learning: almost always gradient descent

• Reinforcement learning: often not gradient descent
• Q-learning: fixed point iteration

• Model-based RL: model is not optimized for expected reward
• Policy gradient: is gradient descent, but also often the least

efficient!

Comparison: stability and ease of use

• Value function fitting
• At best, minimizes error of fit (“Bellman error”)

• Not the same as expected reward

• At worst, doesn’t optimize anything
• Many popular deep RL value fitting algorithms are not guaranteed to

converge to anything in the nonlinear case

• Model-based RL
• Model minimizes error of fit

• This will converge

• No guarantee that better model = better policy

• Policy gradient
• The only one that actually performs gradient descent (ascent) on

the true objective

Comparison: assumptions

• Common assumption #1: full observability
• Generally assumed by value function fitting

methods

• Can be mitigated by adding recurrence

• Common assumption #2: episodic learning
• Often assumed by pure policy gradient methods

• Assumed by some model-based RL methods

• Common assumption #3: continuity or
smoothness
• Assumed by some continuous value function

learning methods
• Often assumed by some model-based RL

methods

Examples of Algorithms

Examples of specific algorithms

• Value function fitting methods
• Q-learning, DQN
• Temporal difference learning
• Fitted value iteration

• Policy gradient methods
• REINFORCE
• Natural policy gradient
• Trust region policy optimization

• Actor-critic algorithms
• Asynchronous advantage actor-critic (A3C)
• Soft actor-critic (SAC)

• Model-based RL algorithms
• Dyna
• Guided policy search

We’ll learn about
most of these in the

next few weeks!

The goal of reinforcement learning
we’ll come back to partially observed later

The goal of reinforcement learning

infinite horizon case finite horizon case

Evaluating the objective

Direct policy differentiation

a convenient identity

Direct policy differentiation

Evaluating the policy gradient

generate
samples (i.e.

run the policy)

fit a model to
estimate return

improve the
policy

Understanding Policy Gradients

Evaluating the policy gradient

Comparison to maximum likelihood

training
data

supervised
learning

Example: Gaussian policies

What did we just do?

good stuff is made more likely

bad stuff is made less likely

simply formalizes the notion of “trial and error”!

Partial observability

What is wrong with the policy gradient?

high variance

generate
samples (i.e.

run the policy)

fit a model to
estimate return

improve the
policy

Review

• Evaluating the RL objective
• Generate samples

• Evaluating the policy gradient
• Log-gradient trick

• Generate samples

• Understanding the policy gradient
• Formalization of trial-and-error

• Partial observability
• Works just fine

• What is wrong with policy gradient?

Reducing Variance

Reducing variance

“reward to go”

Baselines

but… are we allowed to do that??

subtracting a baseline is unbiased in expectation!

average reward is not the best baseline, but it’s pretty good!

a convenient identity

Analyzing variance

This is just expected reward, but weighted
by gradient magnitudes!

generate
samples (i.e.

run the policy)

fit a model to
estimate return

improve the
policy

Review

• The high variance of policy gradient

• Exploiting causality
• Future doesn’t affect the past

• Baselines
• Unbiased!

• Analyzing variance
• Can derive optimal baselines

Off-Policy Policy Gradients

Policy gradient is on-policy

• Neural networks change only a little bit
with each gradient step

• On-policy learning can be extremely
inefficient!

Off-policy learning & importance sampling

importance sampling

Deriving the policy gradient with IS

a convenient identity

The off-policy policy gradient

if we ignore this, we get
a policy iteration algorithm

(more on this in a later lecture)

A first-order approximation for IS (preview)

We’ll see why this is
reasonable

later in the course!

Implementing Policy Gradients

Policy gradient with automatic differentiation

Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Maximum likelihood:
Given:
actions - (N*T) x Da tensor of actions
states - (N*T) x Ds tensor of states
Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits)
loss = tf.reduce_mean(negative_likelihoods)
gradients = loss.gradients(loss, variables)

Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Policy gradient:
Given:
actions - (N*T) x Da tensor of actions
states - (N*T) x Ds tensor of states
q_values – (N*T) x 1 tensor of estimated state-action values
Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits)
weighted_negative_likelihoods = tf.multiply(negative_likelihoods, q_values)
loss = tf.reduce_mean(weighted_negative_likelihoods)
gradients = loss.gradients(loss, variables)

q_values

Policy gradient in practice

• Remember that the gradient has high variance
• This isn’t the same as supervised learning!

• Gradients will be really noisy!

• Consider using much larger batches

• Tweaking learning rates is very hard
• Adaptive step size rules like ADAM can be OK-ish

• We’ll learn about policy gradient-specific learning rate
adjustment methods later!

generate
samples (i.e.

run the policy)

fit a model to
estimate return

improve the
policy

Review

• Policy gradient is on-policy

• Can derive off-policy variant
• Use importance sampling
• Exponential scaling in T
• Can ignore state portion

(approximation)

• Can implement with automatic
differentiation – need to know what
to backpropagate

• Practical considerations: batch size,
learning rates, optimizers

Advanced Policy Gradients

What else is wrong with the policy gradient?

(image from Peters & Schaal 2008)

Essentially the same
problem as this:

Covariant/natural policy gradient

Covariant/natural policy gradient

see Schulman, L., Moritz, Jordan, Abbeel (2015) Trust region policy optimization

(figure from Peters & Schaal 2008)

Advanced policy gradient topics

• What more is there?

• Next time: introduce value functions and Q-functions

• Later in the class: more on natural gradient and automatic step size
adjustment

Policy gradients suggested readings

• Classic papers
• Williams (1992). Simple statistical gradient-following algorithms for connectionist

reinforcement learning: introduces REINFORCE algorithm
• Baxter & Bartlett (2001). Infinite-horizon policy-gradient estimation: temporally

decomposed policy gradient (not the first paper on this! see actor-critic section later)
• Peters & Schaal (2008). Reinforcement learning of motor skills with policy gradients:

very accessible overview of optimal baselines and natural gradient

• Deep reinforcement learning policy gradient papers
• Levine & Koltun (2013). Guided policy search: deep RL with importance sampled policy

gradient (unrelated to later discussion of guided policy search)
• Schulman, L., Moritz, Jordan, Abbeel (2015). Trust region policy optimization: deep RL

with natural policy gradient and adaptive step size
• Schulman, Wolski, Dhariwal, Radford, Klimov (2017). Proximal policy optimization

algorithms: deep RL with importance sampled policy gradient

Acknowledgements

Slides adapted from

CS 188 UC Berkeley
Pieter Abbeel, Dan Klein et al.

CS 285 UC Berkeley
Sergey Levine

CSC 498 Univ of Toronto
Animesh Garg

