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Summary: MDP Equations

• Value iteration equation:

• Policy evaluation equation:

• Policy iteration equation:



The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal



Convergence when Solving MDPs

• Redefine value update as general Bellman Utility update
• Recursive update or utility (sum of discounted reward)

• How does this converge?
• Assume fixed policy 𝜋𝑖(𝑠).

• R(s) is the short term reward of being in s



Convergence when Solving MDPs

• How does this update rule converge?

• Re-write update:
• B is a linear operator (like a matrix)

• U is a vector

• Interested in delta between Utilities: 

Bellman 
Recursion



Detour: Convergence of Bellman backup 



Convergence when Solving MDPs

• How does this delta converge?

• Utility error estimate reduced by 𝛾 each iteration:

• Total Utilities are bounded,

• Consider minimum initial error:
• (Max norm)

• Max error: reduce by discount each step. 



Utility Error Bound

• Error at step 0:

• Error at step N:

• Steps for error below 𝜖:



MDP Convergence Visualized

• Value iteration converges 
exponentially (with 
discount factor)

• Policy iteration will 
converge linearly to 0.



Summary: MDP Algorithms

• So you want to….
• Compute optimal values: use value iteration or policy iteration

• Compute values for a particular policy: use policy evaluation

• Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!
• They basically are – they are all variations of Bellman updates

• They all use one-step lookahead expectimax fragments

• They differ only in whether we plug in a fixed policy or max over actions



Definitions



1. run away

2. ignore

3. pet

Terminology & notation



Images: Bojarski et al. ‘16, NVIDIA

training 
data

supervised 
learning

Imitation Learning



Reward functions



Algorithms



The anatomy of a reinforcement learning
algorithm

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



A simple example

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Another example: RL by backprop

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Which parts are expensive?

generate samples 
(i.e. run the policy)

trivial, fast
fit a model/

estimate the return

improve the policy

real robot/car/power 
grid/whatever:
1x real time, until we 
invent time travel

MuJoCo simulator:
up to 10000x real time

expensive



Value Functions



How do we deal with all these expectations?

what if we knew this part?



Definition: Q-function

Definition: value function



Using Q-functions and value functions



The anatomy of a reinforcement learning
algorithm

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy

this often uses Q-
functions or value
functions



Types of Algorithms



Types of RL algorithms

• Policy gradients: directly differentiate the above objective

• Value-based: estimate value function or Q-function of the optimal policy 
(no explicit policy)

• Actor-critic: estimate value function or Q-function of the current policy, 
use it to improve policy

• Model-based RL: estimate the transition model, and then…
• Use it for planning (no explicit policy)

• Use it to improve a policy

• Something else



Model-based RL algorithms

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Model-based RL algorithms

improve the policy

1. Just use the model to plan (no policy)
• Trajectory optimization/optimal control (primarily in continuous spaces) –

essentially backpropagation to optimize over actions
• Discrete planning in discrete action spaces – e.g., Monte Carlo tree search

1. Backpropagate gradients into the policy
• Requires some tricks to make it work

2. Use the model to learn a value function
• Dynamic programming
• Generate simulated experience for model-free learner



Value function based algorithms

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Direct policy gradients

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Actor-critic: value functions + policy gradients

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Tradeoffs Between Algorithms



Why so many RL algorithms?

• Different tradeoffs
• Sample efficiency

• Stability & ease of use

• Different assumptions
• Stochastic or deterministic?

• Continuous or discrete?

• Episodic or infinite horizon?

• Different things are easy or hard in 
different settings
• Easier to represent the policy?

• Easier to represent the model?

generate 
samples (i.e. 

run the policy)

fit a model/
estimate return

improve the
policy



Comparison: sample efficiency

• Sample efficiency = how many samples 
do we need to get a good policy?

• Most important question: is the 
algorithm off policy?
• Off policy: able to improve the policy 

without generating new samples from that 
policy

• On policy: each time the policy is changed, 
even a little bit, we need to generate new 
samples

generate 
samples (i.e. 

run the policy)

fit a model/
estimate return

improve the 
policy

just one gradient step



Comparison: sample efficiency

More efficient 
(fewer samples)

Less efficient 
(more samples)

on-policyoff-policy

Why would we use a less efficient algorithm? 

Wall clock time is not the same as efficiency!

evolutionary or 
gradient-free 
algorithms

on-policy policy 
gradient 
algorithms

actor-critic 
style 
methods

off-policy 
Q-function 
learning

model-based
deep RL

model-based
shallow RL



Comparison: stability and ease of use

• Does it converge?

• And if it converges, to what?

• And does it converge every time?

Why is any of this even a question???

• Supervised learning: almost always gradient descent

• Reinforcement learning: often not gradient descent
• Q-learning: fixed point iteration

• Model-based RL: model is not optimized for expected reward
• Policy gradient: is gradient descent, but also often the least

efficient!



Comparison: stability and ease of use

• Value function fitting
• At best, minimizes error of fit (“Bellman error”)

• Not the same as expected reward

• At worst, doesn’t optimize anything
• Many popular deep RL value fitting algorithms are not guaranteed to 

converge to anything in the nonlinear case

• Model-based RL
• Model minimizes error of fit

• This will converge

• No guarantee that better model = better policy

• Policy gradient
• The only one that actually performs gradient descent (ascent) on 

the true objective



Comparison: assumptions

• Common assumption #1: full observability
• Generally assumed by value function fitting 

methods

• Can be mitigated by adding recurrence

• Common assumption #2: episodic learning
• Often assumed by pure policy gradient methods

• Assumed by some model-based RL methods

• Common assumption #3: continuity or 
smoothness
• Assumed by some continuous value function 

learning methods
• Often assumed by some model-based RL

methods



Examples of Algorithms



Examples of specific algorithms

• Value function fitting methods
• Q-learning, DQN
• Temporal difference learning
• Fitted value iteration

• Policy gradient methods
• REINFORCE
• Natural policy gradient
• Trust region policy optimization

• Actor-critic algorithms
• Asynchronous advantage actor-critic (A3C)
• Soft actor-critic (SAC)

• Model-based RL algorithms
• Dyna
• Guided policy search

We’ll learn about 
most of these in the 

next few weeks!



The goal of reinforcement learning
we’ll come back to partially observed later



The goal of reinforcement learning

infinite horizon case finite horizon case



Evaluating the objective



Direct policy differentiation

a convenient identity



Direct policy differentiation



Evaluating the policy gradient

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the
policy



Understanding Policy Gradients



Evaluating the policy gradient



Comparison to maximum likelihood

training
data

supervised 
learning



Example: Gaussian policies



What did we just do?

good stuff is made more likely 

bad stuff is made less likely

simply formalizes the notion of “trial and error”!



Partial observability



What is wrong with the policy gradient?

high variance



generate 
samples (i.e. 

run the policy)

fit a model to
estimate return

improve the
policy

Review

• Evaluating the RL objective
• Generate samples

• Evaluating the policy gradient
• Log-gradient trick

• Generate samples

• Understanding the policy gradient
• Formalization of trial-and-error

• Partial observability
• Works just fine

• What is wrong with policy gradient?



Reducing Variance



Reducing variance

“reward to go”



Baselines

but… are we allowed to do that??

subtracting a baseline is unbiased in expectation!

average reward is not the best baseline, but it’s pretty good!

a convenient identity



Analyzing variance

This is just expected reward, but weighted 
by gradient magnitudes!



generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy

Review

• The high variance of policy gradient

• Exploiting causality
• Future doesn’t affect the past

• Baselines
• Unbiased!

• Analyzing variance
• Can derive optimal baselines



Off-Policy Policy Gradients



Policy gradient is on-policy

• Neural networks change only a little bit 
with each gradient step

• On-policy learning can be extremely 
inefficient!



Off-policy learning & importance sampling

importance sampling



Deriving the policy gradient with IS

a convenient identity



The off-policy policy gradient

if we ignore this, we get 
a policy iteration algorithm 

(more on this in a later lecture)



A first-order approximation for IS (preview)

We’ll see why this is
reasonable

later in the course!



Implementing Policy Gradients



Policy gradient with automatic differentiation



Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Maximum likelihood:
# Given:
# actions - (N*T) x Da tensor of actions 
# states - (N*T) x Ds tensor of states
# Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits 
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits) 
loss = tf.reduce_mean(negative_likelihoods)
gradients = loss.gradients(loss, variables)



Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Policy gradient:
# Given:
# actions - (N*T) x Da tensor of actions 
# states - (N*T) x Ds tensor of states
# q_values – (N*T) x 1 tensor of estimated state-action values
# Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits 
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits) 
weighted_negative_likelihoods = tf.multiply(negative_likelihoods, q_values)
loss = tf.reduce_mean(weighted_negative_likelihoods) 
gradients = loss.gradients(loss, variables)

q_values



Policy gradient in practice

• Remember that the gradient has high variance
• This isn’t the same as supervised learning!

• Gradients will be really noisy!

• Consider using much larger batches

• Tweaking learning rates is very hard
• Adaptive step size rules like ADAM can be OK-ish

• We’ll learn about policy gradient-specific learning rate 
adjustment methods later!



generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy

Review

• Policy gradient is on-policy

• Can derive off-policy variant
• Use importance sampling
• Exponential scaling in T
• Can ignore state portion 

(approximation)

• Can implement with automatic 
differentiation – need to know what 
to backpropagate

• Practical considerations: batch size, 
learning rates, optimizers



Advanced Policy Gradients



What else is wrong with the policy gradient?

(image from Peters & Schaal 2008)

Essentially the same 
problem as this:



Covariant/natural policy gradient



Covariant/natural policy gradient

see Schulman, L., Moritz, Jordan, Abbeel (2015) Trust region policy optimization

(figure from Peters & Schaal 2008)



Advanced policy gradient topics

• What more is there?

• Next time: introduce value functions and Q-functions

• Later in the class: more on natural gradient and automatic step size 
adjustment



Policy gradients suggested readings

• Classic papers
• Williams (1992). Simple statistical gradient-following algorithms for connectionist 

reinforcement learning: introduces REINFORCE algorithm
• Baxter & Bartlett (2001). Infinite-horizon policy-gradient estimation: temporally

decomposed policy gradient (not the first paper on this! see actor-critic section later)
• Peters & Schaal (2008). Reinforcement learning of motor skills with policy gradients: 

very accessible overview of optimal baselines and natural gradient

• Deep reinforcement learning policy gradient papers
• Levine & Koltun (2013). Guided policy search: deep RL with importance sampled policy

gradient (unrelated to later discussion of guided policy search)
• Schulman, L., Moritz, Jordan, Abbeel (2015). Trust region policy optimization: deep RL 

with natural policy gradient and adaptive step size
• Schulman, Wolski, Dhariwal, Radford, Klimov (2017). Proximal policy optimization

algorithms: deep RL with importance sampled policy gradient
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