CS 8303

Deep Reinforcement Learning

Lec 3: Intro to RL
Fall 2024

Animesh Garg



Summary: MDP Equations

* Value iteration equation:

Vig1(s) <= max " T(s,a,5) |R(s,a,s) + v V(s

S,
 Policy evaluation equation:

Vi1 (s) < ZT(S mi(s),8') |R(s,mi(s),s") + vV, (s))]

e Policy iteration equation:
mi+1(s) =argmax) T(s,a, s") [R(s, a,s) + 'yVWi(s')}
a

8/



The Bellman Equations

How to be optimal:

(& Step 1: Take correct first action

Step 2§Keep being optimal

%&




Convergence when Solving MDPs

» Redefine value update as general Bellman Utility update
e Recursive update or utility (sum of discounted reward)

AORS ZT(S mi(s),s") [R(s,mi(s),8") + v V(s

|

Uii1(s) < R(s) +~ mjugc) P(s'|s,a)U;(s")
ac S

* How does this converge?
* Assume fixed policy m; (s).
* R(s)is the short term reward of beingin s



Convergence when Solving MDPs

* How does this update rule converge?

Uit1(s) < R(s) + TR P(s'|s,a)U;(s")
acA(s

: /
* Re-write update: U,11 < BU; v = Av Sellan
* Bis alinear operator (like a matrix) Recursion

e JIs avector

* Interested in delta between Utilities: HUZ'-|-1 —U; H

|BU;+1 — BU;|| < 7||Us+1 — Us||



Convergence of Bellman backup

Let ||V — V|| = maxs |V(s) — V/(s)| be the infinity norm

1BVic — BVjl| =

( s,a)+ v Z |5 a)Vi (s )) — max (R(s,af)—l—’y Z P(s"|s,a")\zj[s")) H

s'es

< max
4

( s,a) + Z P(s|s,a)Vi(s') — R(s,a) — v > _ P(s’|s,a)v;-(s’)) ‘

s'eS s'es

—max v 32 P(s'|s. a)(Vi(s') — vj(s’n‘
s'es
< max ||y 37 P(s'[s, 3)l| Vi — v;-|)|
s'es
= max[IVi = i1l 3 Pl )
s'es
=7V = Vi

Note: Even if all inequalities are equalities, this is still a contraction if v < 1



Convergence when Solving MDPs

 How does this delta converge?
|BUit+1 — BU;|| < A||Ui1 — Ui
* Utility error estimate reduced by y each iteration:

e Total Utilities are bounded,

Z Rmaw"}/i
1=0

e Consider minimum initial error:
e (Max norm)

* Max error: reduce by discount each step. HUO _ UH <




Utility Error Bound

* Error at step O: HUO L UH < (ZlRmam)
— 7
® . 2Rmam
Error at step N: HUN _ UH _ VN' (1 - ’y) < €
e Steps for error below €: -
log (1245

N =
log (=)



MIDP Convergence Visualized

* Value iteration converges
: : Max error
exponentially (with . 08 Policy loss --------
discount factor) S
~
= 0.6
o
o =
* Policy iteration will S 04 -
converge linearly to O. %
= 0.2
0

0 2 4 6 8 10 12 14

Number of iterations



Summary: MDP Algorithms

* SO0 you want to....
 Compute optimal values: use value iteration or policy iteration
 Compute values for a particular policy: use policy evaluation
e Turn your values into a policy: use policy extraction (one-step lookahead)

* These all look the same!
* They basically are —they are all variations of Bellman updates
* They all use one-step lookahead expectimax fragments
* They differ only in whether we plug in a fixed policy or max over actions



Definitions



Terminology & notation

mo(atoy)
S; — state
0; — observation mg(as|o;) — policy
a; — action 7o (az|sy) — policy (fully observed)

Markov property
independent of s;_1




Imitation Learning

supervised
data learning

training 7o (az|oy)

Images: Bojarski et al. ‘16, NVIDIA



Reward functions

which action is better or worse? s, a, r(s,a), and p(s’[s,a) define

Markov decision process
r(s,a): reward function

tells us which states and actions are better

low reward




Algorithms



ne anatomy of a reinforcement learning
gorithm

fit a model/
estimate the return

generate samples
(i.e. run the policy)
; improve the policy

l




A simple example

fit a model/
estimate the return

generate samples
(i.e. run the policy)

improve the policy 7R/ ESAVINIT)



Another example: RL by backprop

fit a model/

estimate the return learn fd’ such that s;4q1 ~ qu(St, at)

St+1
generate samples

(i.e. run the policy)

backprop through f4 and r to

improve the policy frain 7 (St) _a,




Which parts are expensive?

A PAEES 9o

trivial, fast
fit a model/

estimate the return

learn St41 ~ f¢(St, at)

expensive

real robot/car/power\
grid/whatever:

1x real time, until we
invent time travel

J generate samples

(i.e. run the policy)

MuloCo simulator:
up to 10000x real time

0« 0+ aVeJ(0)

improve the polic
i PORE backprop through f4 and r to

train mg(s;) = ay




Value Functions



How do we deal with all these expectations?

T
ETNP@(T) |:Z T(Stv at):|

t=1

ESlNP(Sl) [Ealw’”(aﬂsl) [T(Shal) + ESQNP(S2|51331) [Ea2N7T(32|52) [T(S% 32) + "'|82] |Slv al} |SlH

l J
|

what if we knew this part?

Q(Slaal) — T(Slaal) + ESsz(SQ|Sl,al) [Eagrwr(a2|52) [T(SQJ 32) + ...|S2] |Sla al}

T
ETNP@(T) [ZT(St’at)] - ESlNP(Sl) [E31NW(31|51) [Q(Sl’a1)|sl]:|

N\

easy to modify mg(ay|s1) if Q(s1,a1) is known!

example: w(ai|s;) = 1 if a; = argmax,, Q(s1,a;)



Definition: Q-function

Q7 (s¢,a) = Zg::t Er, [r(sy,ay)|st, at]: total reward from taking a; in s;

Definition: value function

VT™(st) = Zz:zt Er, [r(s¢,ap)|st]: total reward from s,

Ve (St) — Eat’\’ﬂ'(aﬂst)[@ﬂ (St’ at)]

Eg, ~p(s1)[V™(s1)] is the RL objective!



Using Q-functions and value functions

Idea 1: if we have policy 7, and we know Q™ (s, a), then we can improve T:
set m'(als) = 1 if a = arg max, Q™ (s, a)
this policy is at least as good as 7 (and probably better)!

and it doesn’t matter what 7 is

Idea 2: compute gradient to increase probability of good actions a:
if Q™ (s,a) > V7(s), then a is better than average (recall that V7 (s) = F[Q™(s,a)] under w(als))

modify 7(als) to increase probability of a if Q™ (s,a) > V7 (s)

These ideas are very important in RL; we’ll revisit them again and again!



ne anatomy of a reinforcement learning
gorithm

this often uses Q-

fit a model/ «— functions or value
estimate the return functions

generate samples
(i.e. run the policy)
; improve the policy



Types of Algorithms



Types of RL algorithms

0* = arg max ETNPQ(T) [Z ’l"(St, at)]

0
t

* Policy gradients: directly differentiate the above objective

* Value-based: estimate value function or Q-function of the optimal policy
(no explicit policy)

e Actor-critic: estimate value function or Q-function of the current policy,
use it to improve policy

 Model-based RL: estimate the transition model, and then...
e Use it for planning (no explicit policy)
* Use it to improve a policy
 Something else



Model-based RL algorithms

fit a model/

: learn p(s;11(st, a
estimate the return p(st+1lst, at)

generate samples
(i.e. run the policy)

improve the policy ERGRIE




Model-based RL algorithms

improve the policy PR O

1. Just use the model to plan (no policy)
* Trajectory optimization/optimal control (primarily in continuous spaces) —
essentially backpropagation to optimize over actions

* Discrete planning in discrete action spaces — e.g., Monte Carlo tree search

1. Backpropagate gradients into the policy
* Requires some tricks to make it work

2. Use the model to learn a value function
* Dynamic programming
* Generate simulated experience for model-free learner



Value function based algorithms

fit a model/
ﬁ fit V(s) or Q(s, a)
)

generate samples
(i.e. run the policy)

[RGB set 71(s) = arg max, (s, a)



Direct policy gradients

fit a model/ evaluate returns
estimate the return [FIEE I CPF: VY

generate samples

(i.e. run the policy)

improve the policy [ARSE/AE OJVBE[Zt T(St’ at)]




Actor-critic: value functions + policy gradients

fit a model/
ﬁ fit V(s) or Q(s, a)

generate samples
(i.e. run the policy)
; improve the policy  [RBEIEA Yol la NP




Tradeoffs Between Algorithms



Why so many RL algorithms?

e Different tradeoffs
e Sample efficiency

e Stability & ease of use
. . t t t
* Different assumptions ‘ o

e Stochastic or deterministic? generate
samples (i.e.
e Continuous or discrete? run the policy)

* Episodic or infinite horizon?

‘ improve the

policy

* Different things are easy or hard in
different settings
* Easier to represent the policy?
e Easier to represent the model?



Comparison: sample efficiency

e Sample efficiency = how many samples
do we need to get a good policy?

* Most important question: is the generate l

fit a model/
estimate return

samples (i.e.

algorithm off policy? run the policy)

» Off policy: able toimprove the policy
without generating new samples from that

improve the
policy

policy
: : . 0«0 VoE ,
* On policy: each time the policy is changed, +aVeE[) (s, ar)]
even a little bit, we need to generate new
samples

just one gradient step



Comparison: sample efficiency

off-policy « » on-policy
More efficient Less efficient
(fewer samples) (more samples)
—
model-based  model-based off-policy actor-critic  on-policy policy  evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

Why would we use a less efficient algorithm?

Wall clock time is not the same as efficiency!



Comparison: stability and ease of use

* Does it converge?
* And if it converges, to what?
* And does it converge every time?

Why is any of this even a question???

e Supervised learning: almost always gradient descent

* Reinforcement learning: often not gradient descent
* Q-learning: fixed point iteration
* Model-based RL: model is not optimized for expected reward

* Policy gradient: is gradient descent, but also often the least
efficient!



Comparison: stability and ease of use

* Value function fitting
e At best, minimizes error of fit (“Bellman error”)
* Not the same as expected reward
* At worst, doesn’t optimize anything

 Many popular deep RL value fitting algorithms are not guaranteed to
converge to anything in the nonlinear case

* Model-based RL

e Model minimizes error of fit
* This will converge

* No guarantee that better model = better policy
* Policy gradient

 The only one that actually performs gradient descent (ascent) on
the true objective



Comparison: assumptions

* Common assumption #1: full observability

* Generally assumed by value function fitting
methods

e Can be mitigated by adding recurrence

* Common assumption #2: episodic learning
e Often assumed by pure policy gradient methods
* Assumed by some model-based RL methods

* Common assumption #3: continuity or
smoothness
* Assumed by some continuous value function
learning methods

e Often assumed by some model-based RL
methods




Examples of Algorithms



Examples of specific algorithms

* Value function fitting methods
* Q-learning, DQN
* Temporal difference learning
* Fitted value iteration

* Policy gradient methods ;
e REINEORCE We'll learn about

* Natural policy gradient most of these in the

* Trust region policy optimization
N . next few weeks!
* Actor-critic algorithms
* Asynchronous advantage actor-critic (A3C)

» Soft actor-critic (SAC)

* Model-based RL algorithms
* Dyna
* Guided policy search




The goal of reinforcement learning

we’ll come back to partially observed later

\
\ur\ \
\W\: 1
\ A \ A \
“lia 3:' \_*1_»\ 13 L] [dens = O =——)
N -
384 \
Max J
pppp 405 4096 \

J

T
po(st ... 87 87) = pls: H (a¢|se)p(ses1lse, ar)
I :

po(T)

0* = arg max Erpo (1) [Zt: r(st, at)]



The goal of reinforcement learning

0* = arg max Erpo(r) [ZT (s¢,aq) ]

t

T

0* = arg max E(s.a)~po(s,a)[7(S,a)] 0* = arg max Z E(s, a,)~po(si,a.) |7 (e, az)]
t=1
infinite horizon case finite horizon case



Evaluating the objective

0* = arg mgx Erpy () [Zt: r(s¢, at)]

by A,
2
L sum over samples from 7y



Direct policy differentiation

6* = arg mgx Erpy () [Z r(s¢, at)]
t

,o

J(0) = Er oy [r(r)] = / po(7)r(r)dr
\_Y_J

T
Z’r(st, a)
t=1

VoJ(0) = | Vopo(T)r(T)dr :/pg(T)Vg log po(7)r(7)dT = Errippy(r)[ Vo log po(7)r(7)]




Direct policy differentiation

T
0 = argmg‘x J(g) pg(sl,al, .. ST,aT H at|st st+1|st,at)
J(6) = ey (7] og of bothees po() r
log po(7) =logp(s1) + Y _logmo(ac|s;) + log p(sit1se, a)
VoJ(0) = Erp,+)|Vologpe(T)r(T)] t—1

A
[ \

T
1054?61) + ; log mo(ays;) + 1%&)]

Vo

T
Vo J(0) = B po(r) [(Z Vo log mg(a;|s;) ) (Zr S¢, ay )]

t=1



Evaluating the policy gradient

1 Eifm)%
recall: J(0) = Erpo(r) [E r(st, a ] NWE E r(Sit, it) < SR ST

VoJ(0) = Erp,(r) [(Z Vi logﬂe(atst)) (Z T(St,at))]

t=1

fita model to
estimate return

generate
samples (i.e.
run the policy)

‘ improve the
policy

Vo J(0) =~ % Z (Z Vg log wa(ai,t|si,t)) (Z r(Sit, a,,;’t))

1i=1 \t=1

0 <+ 9—|—OfV9J(9)

REINFORCE algorithm:

1. sample {7*} from my(as|s;) (run the policy)

2. Vo (0) = 3, (X, Vo logmy(ailsi)) (32, r(si, al))
3. 0+ 0 —I—OngJ(Q)



Understanding Policy Gradients



Evaluating the policy gradient
recall: J(0) = E.wp,(r) [Zr st,at]N ZZT‘ (Sit,@it)

VoJ(0) = Erp,(r) [(Z Vg log 779(315|St)) (Z T(Staat))]

t=1

| T
Ved(0) ~ N Z (Z Vg log ﬂg(ai,t\si,t)) (Z r(si’t,ai,t))

=1

t=1

L what is this?

\ \ O\ \
13 1
\\ \ l 3 \
> K <o
3| - den: fer
13 = 13
AN
384

t=1

ppppppp




Comparison to maximum likelihood

N T

T
1
policy gradient: VgJ(0) ~ N Z (Z Vo log mg(ai ¢|s; + ) (z?" Sits it )

i=1 \t=1 t=1

i=1 \t=1

N /T
1
maximum likelihood: VgJumr(0) =~ N Z (Z Vo log We(ai,t|si,t))

g == s v
\ [[ V[\,‘.\:\\ ~ 'Fs 'D
To(arls)
training supervised o (at |St)

s learning




Example: Gaussian policies

1
Vol (0) ~ <

N
=1

T T
(Zv(?logﬂ_ﬁ aztszt) (ZT S'Lt azt)
t=1

t=1

example: e (at|st) — N(fneural network(st)§ E)
1

log mp(as|st) = —§||f(st) — at||§3 + const

Vo logma(arls:) = —55 7 (f(s1) — a0)

REINFORCE algorithm:

1. sample {7*} from my(as|s;) (run it on the robot)

2. VoJ(0) = ), (Zt Vo 10gﬂ9(3t|st)) (Zt T(Siva?t;))
3. 00 —I—OngJ(Q)



What did we just do”?

N
1
VoJ(0) = ﬁz (ZVglog'ﬂg (a; ¢|sit) ) (Zr Sits At )
i=1 \t=1
| N
VoJ(0) =~ ~ Z Vo logmg(7;)r(7;) maximum likelihood:  VgJur(0) = i ZV@ log g (7;)

> Vologymo(ailsi)

good stuff is made more likely

bad stuff is made less likely

simply formalizes the notion of “trial and error”!

REINFORCE algorithm:

1. sample {7*} from my(as|s;) (run it on the robot)

2. Vo (0) = X, (X, Ve log mo(ailsi)) (3, r(si,a}))
3. 00 —|—OngJ(9)



Partial observability

N /T
1
Vo J(0) =~ N Z (Z Vo log mg(a; ¢|0;¢)

i=1 \it=1

Markov property is not actually used!

Can use policy gradient in partially observed MDPs without modification



What is wrong with the policy gradient?

N
1
Vol (0) ~ > Vologmg(r)r(r)
1=1

even worse: what if the two “good” samples have r(7) = 07 high variance



Review

T

* Evaluating the RL objective S (i)
* Generate samples t—1

* Evaluating the policy gradient ﬁ

* Log-gradient trick generate
* Generate samples P

fit a model to

estimate return

run the policy)

* Understanding the policy gradient

‘ improve the
* Formalization of trial-and-error policy

* Partial observability 0 0+ aVeJ(0)
* Works just fine

* What is wrong with policy gradient?



Reducing Variance



Reducing variance

N T T
1
VQJ(Q)%ﬁ§ (2 V@logﬂ'g aztszt)(z Tsztaazt)
t=1

i=1 \t=1
Causality: policy at time ¢’ cannot affect reward at time ¢ when ¢ < ¢/

| DT T
VoJ (0 ﬁ;;VealOgﬂe ait|Sit) (t? T(Si,t’aai,t’))

\ J
|

“reward to go”

~

Qi t



a convenient identity

Baselines

po(T)Velog pe(T) = Vope(T)

E[Vglogpg(T)b] = /pg(T)Vg log pg(T)bdr = /Vgpg(T)de = ng/pg(T)dT =bVyl =0

subtracting a baseline is unbiased in expectation!

average reward is not the best baseline, but it’s pretty good!



Analyzing variance

can we write down the variance?
Var[z] = E[z?] — E[z]?
VoJ(0) = Erp, () Vologpe(T)(r(T) — )]

Var = E.p,, () [(Volog pe(T)(r(T) — b))z] — Errpy(r)[Vologpg(T)(r(T) — b)]2

this bit is just E.,,+)[Velogpe(T)r(7)]
(baselines are unbiased in expectation)

dVar d d

—= = - Blg(r)(r(r) = b)) = 5 (ElalPr7)’] - 2B[g(r)*r(n)b] + BBy (7)?))

= —2Eg(7)*r(7)] + 2bE[g(7)*] = 0

o Elg(r)*r(n)] This is just expected reward, but weighted
2] by gradient magnitudes!



Review

* The high variance of policy gradient

* Exploiting causality
e Future doesn’t affect the past

e Baselines
 Unbiased!

* Analyzing variance
e Can derive optimal baselines

~

QW(Xta ut) —

T(Xt’a ut’)

E

tl’

fit a model to
ﬁ estimate return

generate
samples (i.e.
run the policy)

‘ improve the

policy

|
o~

0+ 0+ O{V@J(Q)



Off-Policy Policy Gradients



Policy gradient is on-policy

0* = arg max J(0)

J(8) = Eropy oy [r(7) * Neural networks change only a little bit

with each gradient step
VoJ(0) = Ernpy(r)[Velog pe(T)r (7)) * On-policy learning can be extremely

L inefficient!
this is trouble...

can’t just skip this!
REINFORCE algorithm: /

1. sample {7'} from my(as|s;) (run it on the robot)

2. VQJ(Q) ~ Z% (Zt Vg log Wﬁ(aﬂsi)) (Zt T(Si,a%))
3. 00+ aVyJ(0)




Off-policy learning & importance sampling

0" = arg ngX J(0) importance sampling
L = x)f(zx)dx
J0) = Eor ()] o F@)] = [ pla) (@)

_ [ a=) I
what if we don’t have samples from pg(7)7 = @p(x)f (z)dz
(we have samples from some p(7) instead) B / y (m)p(x)

q(z)

(
7(6) = Erar [(ﬂl ~ Eueato) |2 @)

PG(T) = p(Sl) H Wﬂ(at|st)p(st—|—1‘sta at)

po(T) Mﬂt 1 To(ac|se ) plserrtstar) [T;_, mo(als:)

P(7)  peD) [,oy Tarls)plserdsran [l—, 7(arlsy)




Deriving the policy gradient with IS

0* = arg max J(0) a convenient identity

T)Vol 7)=V T
J0) = Broplr 7] po(r)Valog () = Vapa(r)

can we estimate the value of some new parameters 6’7

@) the only bit that depends on 6’
[)

=

V@fpaf(T),r(T)] = Erpy(r) [M Vo log pe/ (T)7(7)

po(T)

Vo J(0') = Erpy(r) [

now estimate locally, at @ = 0": Vg J(6) = Ervp,(r) [V logpg(T)r(7)]



The off-policy policy gradient

_ H;r:1 To (a¢|st)

. max J(0) J(0) = Erropy(r)[1(7T)] por (7)
Dy pe(7)
VQ’J(OI) — ETN'PG(T) pi((:)) Vo log Ty (T)T(T)] when 6 # 0’

p
_ HT WAGIED, 3 ZT
ratg|st
— ETNPG(T) ( 7T9(at|st)) ( Vo logﬂ-ﬂ’ at|St ) ( r Staat

t=1

t=1

t

7T9f atf|str
) |3 Vi log o (ars) (H

7o afo
t—1 =1 [st)

future actions don’t affect current weight /}

if we ignore this, we get
a policy iteration algorithm
(more on this in a later lecture)

===
thl T (at|st)

] what about causality?




A first-order approximation for IS (preview)

Vo J(0') = Erpy(r) Zvef log mo- (at|st) (H e (atfl&y)) (Z T(St’aat’))]

t—1 =y 0 (ar[st) =t

L exponential in 7T'...

let’s write the objective a bit differently...

=1 t=1 ~
(Si,ta ai,t) ~ W@(St, at)

g (Si,ta ai,t)

W@(Si,t, ai,t)

off-policy policy gradient: WV, .J(¢)

Vg log me: (ai,t|si,t)@i,t

2
2|~
-
&

N
Z Z W@f(%j ng(a?;’t|sq;,t) ~

V4 . - 1
We'll see why thisis _ % Vo log 1o (ai[51 1)Os s
reasonable N = mpfsit) mo(ai|si)

later in the course! ignore this part




Implementing Policy Gradients



Policy gradient with automatic differentiation

T

N
1 A
VGJ(Q) ~ N E E Vi 10gﬂ'9(ai,t|8i,t)@i,t
=1t

=1

L pretty inefficient to compute these explicitly!

How can we compute policy gradients with automatic differentiation?

We need a graph such that its gradient is the policy gradient!

maximum likelihood: VgJur (0 Z Z Volog mg(a; |s;+) Jur (0 Z log mg(a; ¢[s; +)
1=1 t=1 =1 t=1

Just implement “pseudo-loss” as a weighted maximum likelihood:

~ 1 N T
ﬁzzbgﬂ'e azt|Szt ta

1=1 ¢

=1
L cross entropy (discrete) or squared error (Gaussian)



Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Maximum likelihood:

logits = policy.predictions(states)
negative likelihoods = tf.nn.softmax _cross entropy with logits(labels=actions, logits=logits)
loss = tf.reduce_mean(negative likelihoods)
gradients = loss.gradients(loss, variables)



Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Policy gradient:

# Given:

# actions - (N*T) x Da tensor of actions

# states - (N*T) x Ds tensor of states

# g _values - (N*T) x 1 tensor of estimated state-action values

# Build the graph:

logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative likelihoods = tf.nn.softmax _cross entropy with logits(labels=actions, logits=logits)
weighted negative likelihoods = tf.multiply(negative likelihoods, q_values)

loss = tf.reduce_mean(weighted negative likelihoods)

gradients = loss.gradients(loss, variables)

N

~ 1
J(0) ~ ~ Z Z log ﬂ'g(ai,t|8i’
g_values

1=1 t=1



Policy gradient in practice

* Remember that the gradient has high variance
* This isn’t the same as supervised learning!
e Gradients will be really noisy!

* Consider using much larger batches

* Tweaking learning rates is very hard
* Adaptive step size rules like ADAM can be OK-ish

 We’ll learn about policy gradient-specific learning rate
adjustment methods later!



Review

* Policy gradient is on-policy

e Can derive off-policy variant
* Use importance sampling
* Exponential scalinginT

* Canignore state portion
(approximation)

e Can implement with automatic
differentiation — need to know what

to backpropagate

* Practical considerations: batch size,

learning rates, optimizers

~

QW(Xt: Ut) —

E

'-"‘(Xt' ; U—t’)
tl

|
o~

fit a model to
estimate return

r—>

generate

samples (i.e.
run the policy)

‘ improve the

policy

=8
!
=

0 0+ aVyJ(0)



Advanced Policy Gradients



What else is wrong with the policy gradient?

—_——— T =

7LA< (a)‘Vanilla’ policy gradients
O * b 0.5 NN

) ” I g 'I LLJl 1 '
77w N\
< 04 /g--jf\----’i 1 |
= o O
2 a2 § M
r(si,a;) = —s; —a; S 02(y 11 T
Sogft v v
1 Qraabt 1 F
_ — 0.0L -
log mg(az|s;) = o Q(kst at) + const 0= (k,o0) B 259 <15 —10 —0:5 00
Controller gain 6,=k
(image from Peters & Schaal 2008)
c
_ e e L e S e e S )
Essentially the same  _ TG g T ™ 7@ >
problem as this: s O o N
T ol e SR el
I
—10 0 10



Covariant/natural policy gradient

9(-(9-|-C¥V9J(9) Wg(at|St)

some parameters change probabilities a lot more than others!

9 — arg mgqx(@' —0)1VeJ(0) s.t. |0 —0|* <e
controls how far we go

can we rescale the gradient so this doesn’t happen?

0" + arg mﬁx(é” —0)!'VeJ(0) s.t. D(mg,mg) < €

parameterization-independent divergence measure

usually KL-divergence: Dk, (7 ||mg) = Ex,, [log mg — log me/]

Dy, (o ||70) = (0" — )T F(§' — 0)

Fisher-information matrix

(a)“Vanilla’ policy gradlents

5
I,

Exploration 6,

0.5 A T T TN
QAR
03P
02 +1 1T
O1f\ | | i |

L.b ko

0.0
-2 -1.5 —lO -0.5 0.0

Controller gain 6,=k

F = E.,[Vglogms(als)Vglogmg(als)”]

can estimate with samples



Covariant/natural policy gradient

/ T / T
Dx1, (7o ||0x) =~ (6" — 0) " F(6" — 0) F = E,,[Vglogmg(als)Vglogmy(als)”]
T
0" arg mz}x(ﬁ — 9) VQJ(O) s.t. D(Wef, 7T9) <e€ (a)*Vanilla’ policy gradients (b) Natural pohcy gradlents
0 b 0.5 X T—T <X
TN 7 75 o w N
B 047NN
0« 0+ aF VyJ(0) g 03 41—t
- S o ol T
R \
Bt d L0 22 3 -
] - I 0.0 - 0.0 =
natural gradient: pick B 555 1B 10 0 2 ~1.5 ~10 05 00
Controller gain 6=k Controller gain 6,=k
trust region policy optimization: pick € (figure from Peters & Schaal 2008)

can solve for optimal o while solving F~1V,.J ()
conjugate gradient works well for this

see Schulman, L., Moritz, Jordan, Abbeel (2015) Trust region policy optimization



Advanced policy gradient topics

e What more is there?
 Next time: introduce value functions and Q-functions

 Later in the class: more on natural gradient and automatic step size
adjustment



Policy gradients suggested readings

 Classic papers

* Williams (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning: introduces REINFORCE algorithm

e Baxter & Bartlett (2001). Infinite-horizon policy-gradient estimation: temporally
decomposed policy gradient (not the first paper on this! see actor-critic section later)

* Peters & Schaal (2008). Reinforcement learning of motor skills with policy gradients:
very accessible overview of optimal baselines and natural gradient

* Deep reinforcement learning policy gradient papers
e Levine & Koltun (2013). Guided policy search: deep RL with importance sampled policy
gradient (unrelated to later discussion of guided policy search)

e Schulman, L., Moritz, Jordan, Abbeel (2015). Trust region policy optimization: deep RL
with natural policy gradient and adaptive step size
* Schulman, Wolski, Dhariwal, Radford, Klimov (2017). Proximal policy optimization

algorithms: deep RL with importance sampled policy gradient



Acknowledgements

Slides adapted from

CS 188 UC Berkeley
Pieter Abbeel, Dan Klein et al.

CS 285 UC Berkeley
Sergey Levine

CSC 498 Univ of Toronto
Animesh Garg



