
CS 8803
Deep Reinforcement Learning

Lec 2: Intro to RL
Fall 2024

Animesh Garg

Definitions

1. run away

2. ignore

3. pet

Terminology & notation

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Imitation Learning

Reward functions

Definitions

Andrey Markov

Definitions

Richard Bellman

Definitions

Richard Bellman

Definitions

The goal of reinforcement learning

The goal of reinforcement learning
we’ll come back to partially observed later

The goal of reinforcement learning

The goal of reinforcement learning

Finite horizon case: state-action marginal

state-action marginal

Infinite horizon case: stationary distribution

stationary distribution

stationary = the
same before and
after transition

Infinite horizon case: stationary distribution

stationary distribution

stationary = the
same before and
after transition

Expectations and stochastic systems

infinite horizon case finite horizon case

In RL, we almost always care about expectations

+1 -1

Outline

• Utilities to MDPs

• Value Iteration

• Policy Extraction

• Policy Iteration

• Convergence Analysis

Human Utilities

Human Utilities

• Utilities map states to real numbers. Which numbers?

• Standard approach to assessment (elicitation) of human utilities:
• Compare a prize A to a standard lottery Lp between

• “best possible prize” u+ with probability p

• “worst possible catastrophe” u- with probability 1-p

• Adjust lottery probability p until indifference: A ~ Lp

• Resulting p is a utility in [0,1]

0.999999 0.000001

No change

Pay $30

Instant death

Example: Human Rationality?

• Famous example of Allais (1953)

• A: [0.8, $4k; 0.2, $0]
• B: [1.0, $3k; 0.0, $0]

• C: [0.2, $4k; 0.8, $0]
• D: [0.25, $3k; 0.75, $0]

• Most people prefer B > A, C > D

• But if U($0) = 0, then
• B > A  U($3k) > 0.8 U($4k) = $3200

Markov Decision Process

Non-Deterministic Search

Example: Grid World

 A maze-like problem

 The agent lives in a grid

 Walls block the agent’s path

 Noisy movement: actions do not always go as

planned

 80% of the time, the action North takes the agent

North

(if there is no wall there)

 10% of the time, North takes the agent West; 10%

East

 If there is a wall in the direction the agent would have

been taken, the agent stays put

 The agent receives rewards each time step

 Small “living” reward each step (can be negative)

 Big rewards come at the end (good or bad)

 Goal: maximize sum of rewards

Grid World Actions
Deterministic Grid World Stochastic Grid World

Markov Decision Processes

• An MDP is defined by:
• A set of states s  S
• A set of actions a  A
• A transition function T(s, a, s’)

• Probability that a from s leads to s’, i.e., P(s’| s, a)
• Also called the model or the dynamics

• A reward function R(s, a, s’)
• Sometimes just R(s) or R(s’)

• A start state
• Maybe a terminal state

[Demo – gridworld manual intro (L8D1)]

Video of Demo Gridworld Manual Intro

Policies

• In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

• For MDPs, we want an optimal

policy *: S → A
• A policy  gives an action for each state

• An optimal policy is one that maximizes expected
utility if followed

• An explicit policy defines a reflex agent Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Utilities of Sequences

Utilities of Sequences

• What preferences should an agent have over reward sequences?

• More or less?

• Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting

• It’s reasonable to maximize the sum of rewards

• It’s also reasonable to prefer rewards now to rewards later

• One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

• How to discount?
• Each time we descend a level, we

multiply in the discount once

• Why discount?
• Think of it as a gamma chance of

ending the process at every step

• Also helps our algorithms converge

• Example: discount of 0.5
• U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

• U([1,2,3]) < U([3,2,1])

Quiz: Discounting

• Given:

• Actions: East, West, and Exit (only available in exit states a, e)

• Transitions: deterministic

• Quiz 1: For  = 1, what is the optimal policy?

• Quiz 2: For  = 0.1, what is the optimal policy?

• Quiz 3: For which  are West and East equally good when in state d?

<- <- <-

<- <- ->

1=10 3

Infinite Utilities?!

 Problem: What if the game lasts forever? Do we get infinite rewards?

 Solutions:
 Finite horizon: (similar to depth-limited search)

 Terminate episodes after a fixed T steps (e.g. life)

 Gives nonstationary policies ( depends on time left)

 Discounting: use 0 <  < 1

 Smaller  means smaller “horizon” – shorter term focus

 Absorbing state: guarantee that for every policy, a terminal state will eventually be
reached (like “overheated” for racing)

Optimal Quantities

 The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

 The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

 The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Racing

Example: Racing
• A robot car wants to travel far, quickly

• Three states: Cool, Warm, Overheated

• Two actions: Slow, Fast

• Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

MDP Search Trees
• Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

Expectimax Search Reference

https://inst.eecs.berkeley.edu/~cs188/fa18/assets/slides/lec7/FA18_cs188_lecture7_expectimax_search_and_utilities_1pp.pdf

Recap: Defining MDPs

• Markov decision processes:
• Set of states S
• Start state s0

• Set of actions A
• Transitions P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’) (and discount )

• MDP quantities so far:
• Policy = Choice of action for each state
• Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’

s’

Racing Search Tree

Outline

• Utilities to MDPs

• Value Iteration

• Policy Extraction

• Policy Iteration

• Convergence Analysis

Solving MDPs

Racing Search Tree

Racing Search Tree

• We’re doing way too much work
with expectimax!

• Problem: States are repeated
• Idea: Only compute needed

quantities once

• Problem: Tree goes on forever
• Idea: Do a depth-limited

computation, but with increasing
depths until change is small

• Note: deep parts of the tree
eventually don’t matter if γ < 1

Values of States

Recursive definition of value:

a

s

s, a

s,a,s’

s’

Time-Limited Values

• Key idea: time-limited values

• Define Vk(s) to be the optimal value of s if the game ends in
k more time steps

• Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Computing Time-Limited Values

Value Iteration

Value Iteration

• Start with V0(s) = 0: no time steps left means an expected reward sum of zero

• Given vector of Vk(s) values, do one ply of expectimax from each state:

• Repeat until convergence

• Complexity of each iteration: O(S2A)

• Theorem: will converge to unique optimal values
• Basic idea: approximations get refined towards optimal values
• Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Example: Value Iteration

0 0

0

S: 1

Assume no discount!

F: .5*2+.5*2=2

Example: Value Iteration

0 0

0

2

Assume no discount!

S: .5*1+.5*1=1

F: -10

Example: Value Iteration

0 0

0

2

Assume no discount!

1 0

Example: Value Iteration

0 0

0

2

Assume no discount!

1 0

S: 1+2=3

F:

0.5*(2+2)+0.5*(2+1)=3.5

Example: Value Iteration

0 0

0

2

Assume no discount!

1 0

3.5 2.5 0

Outline

• Utilities to MDPs

• Value Iteration

• Policy Extraction

• Policy Iteration

• Convergence Analysis

Policy Extraction

Computing Actions from Values

• Let’s imagine we have the optimal values V*(s)

• How should we act?
• It’s not obvious!

• We need to do a mini-expectimax (one step)

• This is called policy extraction, since it gets the policy implied by the
values

Computing Actions from Q-Values

• Let’s imagine we have the optimal

q-values:

• How should we act?
• Completely trivial to decide!

• Important lesson: actions are easier to select from q-values than
values!

Policy Methods

Problems with Value Iteration

• Value iteration repeats the Bellman updates:

• Problem 1: It’s slow – O(S2A) per iteration

• Problem 2: The “max” at each state rarely changes

• Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’

s’

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Policy Iteration

• Alternative approach for optimal values:
• Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence

• Step 2: Policy improvement: update policy using one-step look-ahead with
resulting converged (but not optimal!) utilities as future values

• Repeat steps until policy converges

• This is policy iteration
• It’s still optimal!

• Can converge (much) faster under some conditions

Policy Evaluation

Fixed Policies

• Expectimax trees max over all actions to compute the optimal values

• If we fixed some policy (s), then the tree would be simpler – only one action per state
• … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’

s’

(s)

s

s, (s)

s, (s),s’

s’

Do the optimal action Do what  says to do

Utilities for a Fixed Policy

• Another basic operation: compute the utility of a state s under a fixed (generally
non-optimal) policy

• Define the utility of a state s, under a fixed policy :
V(s) = expected total discounted rewards starting in s and following 

• Recursive relation (one-step look-ahead / Bellman equation):

(s)

s

s, (s)

s, (s),s’

s’

Policy Evaluation

• How do we calculate the V’s for a fixed policy ?

• Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

• Efficiency: O(S2) per iteration

• Idea 2: Without the maxes, the Bellman equations are just a linear system
• Solve with your favorite linear system solver

(s)

s

s, (s)

s, (s),s’

s’

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Quiz: Policy Evaluation – Mars Rover

2 Deterministic Actions

Quiz: Policy Evaluation – Mars Rover

We will shortly be interested in not just evaluating the value of a single policy,
but finding an optimal policy. Given this it is informative to think about
properties of the potential policy space. First for the Mars rover example
[7 discrete states (location of rover); 2 actions: Left or Right]

How many deterministic policies are there?

• Pick one 2 / 14 / 72 / 27

Is the optimal policy (one with highest value) for a MDP unique?

• Yes / No / Not Sure

Quiz: Policy Evaluation – Mars Rover

We will shortly be interested in not just evaluating the value of a single policy,
but finding an optimal policy. Given this it is informative to think about
properties of the potential policy space. First for the Mars rover example
[7 discrete states (location of rover); 2 actions: Left or Right]

How many deterministic policies are there?

• Pick one 2 / 14 / 72 / 27 (max total policies |𝐴||𝑆|)

Is the optimal policy (one with highest value) for a MDP unique?

• Yes / No / Not Sure
there may be two actions that have the same optimal value function

Quiz: Policy Evaluation – Mars Rover

• Dynamics: 𝑝 𝑠6 𝑠6, 𝑎1) = 0.5, 𝑝 𝑠7 𝑠6, 𝑎1) = 0.5…..

• Reward: for all actions, +1 in state 𝑠1, +10 in state 𝑠7, 0 otherwise

• Let 𝜋 𝑠 = 𝑎1 ∀𝑠 , assume 𝑉𝑘=[1 0 0 0 0 0 10] for 𝑘 = 1, 𝛾 = 0.5

• Calculate 𝑉𝑘+1 (𝑠6)?

Quiz: Policy Evaluation – Mars Rover

• Dynamics: 𝑝 𝑠6 𝑠6, 𝑎1) = 0.5, 𝑝 𝑠7 𝑠6, 𝑎1) = 0.5…..

• Reward: for all actions, +1 in state 𝑠1, +10 in state 𝑠7, 0 otherwise

• Let 𝜋 𝑠 = 𝑎1 ∀𝑠 , assume 𝑉𝑘=[1 0 0 0 0 0 10] for 𝑘 = 1, 𝛾 = 0.5

• Calculate 𝑉𝑘+1 (𝑠6)?

Policy Iteration

Policy Iteration

• Evaluation: For fixed current policy , find values with policy evaluation:
• Iterate until values converge:

• Improvement: For fixed values, get a better policy using policy extraction
• One-step look-ahead:

Policy Iteration

• There exists a unique optimal value function

• Optimal policy for a MDP in an infinite horizon problem
(agent acts forever) is

• Deterministic

• Stationary (does not depend on time step)

• Unique?
Not necessarily, may have state-actions with identical optimal
values

Policy Iteration

Suppose we take 𝜋𝑖+1for one step and follow 𝜋𝑖 thereafter:
• Expected sum of rewards is at least as good as if we had always followed 𝜋𝑖

Hence 𝜋𝑖+1 improves over 𝜋𝑖

Monotonic Improvement in Policy Iteration

• Definition:

• Proposition 𝑉𝜋𝑖+1 ≥ 𝑉𝜋𝑖 with strict inequality if 𝜋𝑖 is suboptimal, since
we can find a 𝜋𝑖+1 we get from policy improvement on 𝜋𝑖

Monotonic Improvement in Policy Iteration

Policy Iteration as Bellman Recursion

Comparison

• Both value iteration and policy iteration compute the same thing (all optimal values)

• In value iteration:
• Every iteration updates both the values and (implicitly) the policy

• We don’t track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:
• We do several passes that update utilities with fixed policy (each pass is fast because we consider

only one action, not all of them)

• After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

• The new policy will be better (or we’re done)

• Both are dynamic programs for solving MDPs

Summary: MDP Equations

• Value iteration equation:

• Policy evaluation equation:

• Policy iteration equation:

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

Convergence when Solving MDPs

• Redefine value update as general Bellman Utility update
• Recursive update or utility (sum of discounted reward)

• How does this converge?
• Assume fixed policy 𝜋𝑖(𝑠).

• R(s) is the short term reward of being in s

Convergence when Solving MDPs

• How does this update rule converge?

• Re-write update:
• B is a linear operator (like a matrix)

• U is a vector

• Interested in delta between Utilities:

Bellman
Recursion

Detour: Convergence of Bellman backup

Convergence when Solving MDPs

• How does this delta converge?

• Utility error estimate reduced by 𝛾 each iteration:

• Total Utilities are bounded,

• Consider minimum initial error:
• (Max norm)

• Max error: reduce by discount each step.

Utility Error Bound

• Error at step 0:

• Error at step N:

• Steps for error below 𝜖:

MDP Convergence Visualized

• Value iteration converges
exponentially (with
discount factor)

• Policy iteration will
converge linearly to 0.

Summary: MDP Algorithms

• So you want to….
• Compute optimal values: use value iteration or policy iteration

• Compute values for a particular policy: use policy evaluation

• Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!
• They basically are – they are all variations of Bellman updates

• They all use one-step lookahead expectimax fragments

• They differ only in whether we plug in a fixed policy or max over actions

Acknowledgements

Slides adapted from

CS 188 UC Berkeley
Pieter Abbeel, Dan Klein et al.

CS 285 UC Berkeley
Sergey Levine

CSC 498 Univ of Toronto
Animesh Garg

