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The goal of reinforcement learning



The goal of reinforcement learning
we’ll come back to partially observed later
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Finite horizon case: state-action marginal

state-action marginal



Infinite horizon case: stationary distribution

stationary distribution

stationary = the 
same before and 
after transition



Infinite horizon case: stationary distribution

stationary distribution

stationary = the 
same before and 
after transition



Expectations and stochastic systems

infinite horizon case finite horizon case

In RL, we almost always care about expectations

+1 -1



Outline

• Utilities to MDPs

• Value Iteration

• Policy Extraction 

• Policy Iteration

• Convergence Analysis



Human Utilities



Human Utilities

• Utilities map states to real numbers. Which numbers?

• Standard approach to assessment (elicitation) of human utilities:
• Compare a prize A to a standard lottery Lp between

• “best possible prize” u+ with probability p

• “worst possible catastrophe” u- with probability 1-p

• Adjust lottery probability p until indifference: A ~ Lp

• Resulting p is a utility in [0,1]

0.999999                              0.000001

No change

Pay $30

Instant death



Example: Human Rationality?

• Famous example of Allais (1953)

• A: [0.8, $4k;    0.2, $0]
• B: [1.0, $3k;    0.0, $0]

• C: [0.2, $4k;    0.8, $0]
• D: [0.25, $3k;    0.75, $0]

• Most people prefer B > A, C > D

• But if U($0) = 0, then
• B > A  U($3k) > 0.8 U($4k) = $3200



Markov Decision Process



Non-Deterministic Search



Example: Grid World

 A maze-like problem

 The agent lives in a grid

 Walls block the agent’s path

 Noisy movement: actions do not always go as 

planned

 80% of the time, the action North takes the agent 

North 

(if there is no wall there)

 10% of the time, North takes the agent West; 10% 

East

 If there is a wall in the direction the agent would have 

been taken, the agent stays put

 The agent receives rewards each time step

 Small “living” reward each step (can be negative)

 Big rewards come at the end (good or bad)

 Goal: maximize sum of rewards



Grid World Actions
Deterministic Grid World Stochastic Grid World



Markov Decision Processes

• An MDP is defined by:
• A set of states s  S
• A set of actions a  A
• A transition function T(s, a, s’)

• Probability that a from s leads to s’, i.e., P(s’| s, a)
• Also called the model or the dynamics

• A reward function R(s, a, s’) 
• Sometimes just R(s) or R(s’)

• A start state
• Maybe a terminal state

[Demo – gridworld manual intro (L8D1)]



Video of Demo Gridworld Manual Intro



Policies

• In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal

• For MDPs, we want an optimal 

policy *: S → A
• A policy  gives an action for each state

• An optimal policy is one that maximizes expected 
utility if followed

• An explicit policy defines a reflex agent Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s



Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



Utilities of Sequences



Utilities of Sequences

• What preferences should an agent have over reward sequences?

• More or less?

• Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or



Discounting

• It’s reasonable to maximize the sum of rewards

• It’s also reasonable to prefer rewards now to rewards later

• One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Discounting

• How to discount?
• Each time we descend a level, we 

multiply in the discount once

• Why discount?
• Think of it as a gamma chance of 

ending the process at every step

• Also helps our algorithms converge

• Example: discount of 0.5
• U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

• U([1,2,3]) < U([3,2,1])



Quiz: Discounting

• Given:

• Actions: East, West, and Exit (only available in exit states a, e)

• Transitions: deterministic

• Quiz 1: For  = 1, what is the optimal policy?

• Quiz 2: For  = 0.1, what is the optimal policy?

• Quiz 3: For which  are West and East equally good when in state d?

<- <- <-

<- <- ->

1=10 3



Infinite Utilities?!

 Problem: What if the game lasts forever?  Do we get infinite rewards?

 Solutions:
 Finite horizon: (similar to depth-limited search)

 Terminate episodes after a fixed T steps (e.g. life)

 Gives nonstationary policies ( depends on time left)

 Discounting: use 0 <  < 1

 Smaller  means smaller “horizon” – shorter term focus

 Absorbing state: guarantee that for every policy, a terminal state will eventually be 
reached (like “overheated” for racing)



Optimal Quantities

 The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

 The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

 The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state



Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Example: Racing



Example: Racing
• A robot car wants to travel far, quickly

• Three states: Cool, Warm, Overheated

• Two actions: Slow, Fast

• Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10



Racing Search Tree



MDP Search Trees
• Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

Expectimax Search Reference

https://inst.eecs.berkeley.edu/~cs188/fa18/assets/slides/lec7/FA18_cs188_lecture7_expectimax_search_and_utilities_1pp.pdf


Recap: Defining MDPs

• Markov decision processes:
• Set of states S
• Start state s0

• Set of actions A
• Transitions P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’) (and discount )

• MDP quantities so far:
• Policy = Choice of action for each state
• Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’

s’



Racing Search Tree



Outline

• Utilities to MDPs

• Value Iteration

• Policy Extraction 

• Policy Iteration

• Convergence Analysis



Solving MDPs



Racing Search Tree



Racing Search Tree

• We’re doing way too much work 
with expectimax!

• Problem: States are repeated 
• Idea: Only compute needed 

quantities once

• Problem: Tree goes on forever
• Idea: Do a depth-limited 

computation, but with increasing 
depths until change is small

• Note: deep parts of the tree 
eventually don’t matter if γ < 1



Values of States

Recursive definition of value:

a

s

s, a

s,a,s’

s’



Time-Limited Values

• Key idea: time-limited values

• Define Vk(s) to be the optimal value of s if the game ends in 
k more time steps

• Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]



k=0

Noise = 0.2
Discount = 0.9
Living reward = 0



k=1

Noise = 0.2
Discount = 0.9
Living reward = 0



k=2

Noise = 0.2
Discount = 0.9
Living reward = 0



k=3

Noise = 0.2
Discount = 0.9
Living reward = 0



k=4
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k=5

Noise = 0.2
Discount = 0.9
Living reward = 0



k=6

Noise = 0.2
Discount = 0.9
Living reward = 0



k=7

Noise = 0.2
Discount = 0.9
Living reward = 0



k=8

Noise = 0.2
Discount = 0.9
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k=9

Noise = 0.2
Discount = 0.9
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k=10

Noise = 0.2
Discount = 0.9
Living reward = 0



k=11

Noise = 0.2
Discount = 0.9
Living reward = 0



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Computing Time-Limited Values



Value Iteration



Value Iteration

• Start with V0(s) = 0: no time steps left means an expected reward sum of zero

• Given vector of Vk(s) values, do one ply of expectimax from each state:

• Repeat until convergence

• Complexity of each iteration: O(S2A)

• Theorem: will converge to unique optimal values
• Basic idea: approximations get refined towards optimal values
• Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Example: Value Iteration

0             0             

0

S: 1

Assume no discount!

F: .5*2+.5*2=2



Example: Value Iteration

0             0             

0

2

Assume no discount!

S: .5*1+.5*1=1

F: -10



Example: Value Iteration

0             0             

0

2

Assume no discount!

1 0



Example: Value Iteration

0             0             

0

2

Assume no discount!

1 0

S: 1+2=3

F:

0.5*(2+2)+0.5*(2+1)=3.5



Example: Value Iteration

0             0             

0

2

Assume no discount!

1 0

3.5 2.5 0



Outline

• Utilities to MDPs

• Value Iteration

• Policy Extraction 

• Policy Iteration

• Convergence Analysis



Policy Extraction



Computing Actions from Values

• Let’s imagine we have the optimal values V*(s)

• How should we act?
• It’s not obvious!

• We need to do a mini-expectimax (one step)

• This is called policy extraction, since it gets the policy implied by the 
values



Computing Actions from Q-Values

• Let’s imagine we have the optimal

q-values:

• How should we act?
• Completely trivial to decide!

• Important lesson: actions are easier to select from q-values than 
values!



Policy Methods



Problems with Value Iteration

• Value iteration repeats the Bellman updates:

• Problem 1: It’s slow – O(S2A) per iteration

• Problem 2: The “max” at each state rarely changes

• Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’

s’
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Noise = 0.2
Discount = 0.9
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k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Policy Iteration

• Alternative approach for optimal values:
• Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal 

utilities!) until convergence

• Step 2: Policy improvement: update policy using one-step look-ahead with 
resulting converged (but not optimal!) utilities as future values

• Repeat steps until policy converges

• This is policy iteration
• It’s still optimal!

• Can converge (much) faster under some conditions



Policy Evaluation



Fixed Policies

• Expectimax trees max over all actions to compute the optimal values

• If we fixed some policy (s), then the tree would be simpler – only one action per state
• … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’

s’

(s)

s

s, (s)

s, (s),s’

s’

Do the optimal action Do what  says to do



Utilities for a Fixed Policy

• Another basic operation: compute the utility of a state s under a fixed (generally 
non-optimal) policy

• Define the utility of a state s, under a fixed policy :
V(s) = expected total discounted rewards starting in s and following 

• Recursive relation (one-step look-ahead / Bellman equation):

(s)

s

s, (s)

s, (s),s’

s’



Policy Evaluation

• How do we calculate the V’s for a fixed policy ?

• Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

• Efficiency: O(S2) per iteration

• Idea 2: Without the maxes, the Bellman equations are just a linear system
• Solve with your favorite linear system solver

(s)

s

s, (s)

s, (s),s’

s’



Example: Policy Evaluation

Always Go Right Always Go Forward



Example: Policy Evaluation

Always Go Right Always Go Forward



Quiz: Policy Evaluation – Mars Rover

2 Deterministic Actions



Quiz: Policy Evaluation – Mars Rover

We will shortly be interested in not just evaluating the value of a single policy, 
but finding an optimal policy. Given this it is informative to think about 
properties of the potential policy space. First for the Mars rover example 
[ 7 discrete states (location of rover); 2 actions: Left or Right]

How many deterministic policies are there? 

• Pick one 2 / 14 / 72 / 27

Is the optimal policy (one with highest value) for a MDP unique?

• Yes / No / Not Sure



Quiz: Policy Evaluation – Mars Rover

We will shortly be interested in not just evaluating the value of a single policy, 
but finding an optimal policy. Given this it is informative to think about 
properties of the potential policy space. First for the Mars rover example 
[ 7 discrete states (location of rover); 2 actions: Left or Right]

How many deterministic policies are there? 

• Pick one 2 / 14 / 72 / 27 (max total policies |𝐴||𝑆|)

Is the optimal policy (one with highest value) for a MDP unique?

• Yes / No / Not Sure
there may be two actions that have the same optimal value function



Quiz: Policy Evaluation – Mars Rover

• Dynamics: 𝑝 𝑠6 𝑠6, 𝑎1) = 0.5, 𝑝 𝑠7 𝑠6, 𝑎1) = 0.5…..

• Reward: for all actions, +1 in state 𝑠1, +10 in state 𝑠7, 0 otherwise

• Let 𝜋 𝑠 = 𝑎1 ∀𝑠 , assume 𝑉𝑘=[1 0 0 0 0 0 10] for 𝑘 = 1, 𝛾 = 0.5

• Calculate 𝑉𝑘+1 (𝑠6)?



Quiz: Policy Evaluation – Mars Rover

• Dynamics: 𝑝 𝑠6 𝑠6, 𝑎1) = 0.5, 𝑝 𝑠7 𝑠6, 𝑎1) = 0.5…..

• Reward: for all actions, +1 in state 𝑠1, +10 in state 𝑠7, 0 otherwise

• Let 𝜋 𝑠 = 𝑎1 ∀𝑠 , assume 𝑉𝑘=[1 0 0 0 0 0 10] for 𝑘 = 1, 𝛾 = 0.5

• Calculate 𝑉𝑘+1 (𝑠6)?



Policy Iteration



Policy Iteration

• Evaluation: For fixed current policy , find values with policy evaluation:
• Iterate until values converge:

• Improvement: For fixed values, get a better policy using policy extraction
• One-step look-ahead:



Policy Iteration

• There exists a unique optimal value function

• Optimal policy for a MDP in an infinite horizon problem 
(agent acts  forever) is

• Deterministic

• Stationary (does not depend on time step)

• Unique? 
Not necessarily, may have state-actions with identical optimal  
values



Policy Iteration

Suppose we take 𝜋𝑖+1for one step and follow 𝜋𝑖 thereafter: 
• Expected sum of rewards is at least as good as if we had always followed 𝜋𝑖

Hence 𝜋𝑖+1 improves over 𝜋𝑖



Monotonic Improvement in Policy Iteration

• Definition:

• Proposition 𝑉𝜋𝑖+1 ≥ 𝑉𝜋𝑖 with strict inequality if 𝜋𝑖 is suboptimal, since 
we can find a 𝜋𝑖+1 we get from policy improvement on 𝜋𝑖



Monotonic Improvement in Policy Iteration



Policy Iteration as Bellman Recursion 



Comparison

• Both value iteration and policy iteration compute the same thing (all optimal values)

• In value iteration:
• Every iteration updates both the values and (implicitly) the policy

• We don’t track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:
• We do several passes that update utilities with fixed policy (each pass is fast because we consider 

only one action, not all of them)

• After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

• The new policy will be better (or we’re done)

• Both are dynamic programs for solving MDPs



Summary: MDP Equations

• Value iteration equation:

• Policy evaluation equation:

• Policy iteration equation:



The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal



Convergence when Solving MDPs

• Redefine value update as general Bellman Utility update
• Recursive update or utility (sum of discounted reward)

• How does this converge?
• Assume fixed policy 𝜋𝑖(𝑠).

• R(s) is the short term reward of being in s



Convergence when Solving MDPs

• How does this update rule converge?

• Re-write update:
• B is a linear operator (like a matrix)

• U is a vector

• Interested in delta between Utilities: 

Bellman 
Recursion



Detour: Convergence of Bellman backup 



Convergence when Solving MDPs

• How does this delta converge?

• Utility error estimate reduced by 𝛾 each iteration:

• Total Utilities are bounded,

• Consider minimum initial error:
• (Max norm)

• Max error: reduce by discount each step. 



Utility Error Bound

• Error at step 0:

• Error at step N:

• Steps for error below 𝜖:



MDP Convergence Visualized

• Value iteration converges 
exponentially (with 
discount factor)

• Policy iteration will 
converge linearly to 0.



Summary: MDP Algorithms

• So you want to….
• Compute optimal values: use value iteration or policy iteration

• Compute values for a particular policy: use policy evaluation

• Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!
• They basically are – they are all variations of Bellman updates

• They all use one-step lookahead expectimax fragments

• They differ only in whether we plug in a fixed policy or max over actions
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