# CS 8803 Deep Reinforcement Learning

Lec 2: Intro to RL Fall 2024

**Animesh Garg** 

#### Terminology & notation

**O**<sub>1</sub>



#### Imitation Learning





#### Reward functions



which action is better or worse?

 $r(\mathbf{s}, \mathbf{a})$ : reward function tells us which states and actions are better **s**, **a**,  $r(\mathbf{s}, \mathbf{a})$ , and  $p(\mathbf{s'}|\mathbf{s}, \mathbf{a})$  define Markov decision process



high reward



low reward

Markov chain

 $\mathcal{M} = \{\mathcal{S}, \mathcal{T}\}$ 

 $\mathcal{S}$  – state space

states  $s \in \mathcal{S}$  (discrete or continuous)

 $\mathcal{T}$  – transition operator why "operator"?

let 
$$\mu_{t,i} = p(s_t = i)$$

 $p(s_{t+1}|s_t)$ 



 $\vec{\mu}_t$  is a vector of probabilities

let 
$$\mathcal{T}_{i,j} = p(s_{t+1} = i | s_t = j)$$
 then  $\vec{\mu}_{t+1} = \mathcal{T}\vec{\mu}_t$ 



Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$$

 ${\cal S}$  – state space

states  $s \in \mathcal{S}$  (discrete or continuous)

 $\mathcal{A}$  – action space actions  $a \in \mathcal{A}$  (discrete or continuous)



**Richard Bellman** 

 $\mathcal{T}$  – transition operator (now a tensor!)

let  $\mu_{t,j} = p(s_t = j)$ let  $\xi_{t,k} = p(a_t = k)$ let  $\mathcal{T}_{i,j,k} = p(s_{t+1} = i | s_t = j, a_t = k)$  $\mu_{t+1,i} = \sum_{j,k} \mathcal{T}_{i,j,k} \mu_{t,j} \xi_{t,k}$ 



Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$$

 ${\cal S}$  – state space

states  $s \in \mathcal{S}$  (discrete or continuous)

 $\mathcal{A}$  – action space actions  $a \in \mathcal{A}$  (discrete or continuous)

 $\mathcal{T}$  – transition operator (now a tensor!)

r – reward function

 $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ 

 $r(s_t, a_t)$  – reward



**Richard Bellman** 

partially observed Markov decision process  $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{E}, r\}$ 

 $\mathcal{S}$  – state space states  $s \in \mathcal{S}$  (discrete or continuous)

 $\mathcal{A}$  – action space actions  $a \in \mathcal{A}$  (discrete or continuous)

- $\mathcal{O}$  observation space observations  $o \in \mathcal{O}$  (discrete or continuous)
- $\mathcal{T}$  transition operator (like before)
- $\mathcal{E}$  emission probability  $p(o_t|s_t)$





$$\underbrace{p_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T})}_{p_{\theta}(\tau)} = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) p(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\theta^{\star} = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[ \sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$



$$\underbrace{p_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T})}_{p_{\theta}(\tau)} = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) p(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\theta^{\star} = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[ \sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$







$$p_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T}) = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \underbrace{\pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) p(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \mathbf{a}_{t})}_{\text{Markov chain on } (\mathbf{s}, \mathbf{a})}$$

$$p((\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) | (\mathbf{s}_{t}, \mathbf{a}_{t})) = \left( \boxed{\mathbf{a}_{1}} \atop \mathbf{s}_{1} \right) \xrightarrow{\mathbf{a}_{1}} \left( \boxed{\mathbf{a}_{2}} \atop \mathbf{s}_{2} \right) \xrightarrow{\mathbf{a}_{2}} \left( \boxed{\mathbf{a}_{3}} \atop \mathbf{s}_{3} \right)$$

#### Finite horizon case: state-action marginal

$$\theta^{\star} = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[ \sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$
$$= \arg \max_{\theta} \sum_{t=1}^{T} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})} [r(\mathbf{s}_{t}, \mathbf{a}_{t})]$$

$$p_{ heta}(\mathbf{s}_t, \mathbf{a}_t)$$
 state-action margina



#### Infinite horizon case: stationary distribution

$$\theta^{\star} = \arg \max_{\theta} \sum_{t=1}^{T} E_{(\mathbf{s}_{t},\mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t},\mathbf{a}_{t})} [r(\mathbf{s}_{t},\mathbf{a}_{t})]$$

what if  $T = \infty$ ?

does  $p(\mathbf{s}_t, \mathbf{a}_t)$  converge to a stationary distribution?

$$\begin{split} \mu &= \mathcal{T}\mu & (\mathcal{T} - \mathbf{I})\mu = 0 & \mu = p_{\theta}(\mathbf{s}, \mathbf{a}) & \text{stationary distribution} \\ \mu \text{ is eigenvector of } \mathcal{T} \text{ with eigenvalue 1!} \\ \text{(always exists under some regularity conditions)} \\ \hline \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_1 \\ \mathbf{s}_1 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a}_2 \\ \mathbf{s}_2 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a}_3 \\ \mathbf{s}_3 \end{pmatrix} & \begin{pmatrix} \mathbf{s}_{t+1} \\ \mathbf{a}_{t+1} \end{pmatrix} = \mathcal{T}\begin{pmatrix} \mathbf{s}_t \\ \mathbf{a}_t \end{pmatrix} & \begin{pmatrix} \mathbf{s}_{t+k} \\ \mathbf{a}_{t+k} \end{pmatrix} = \mathcal{T}^k\begin{pmatrix} \mathbf{s}_t \\ \mathbf{a}_t \end{pmatrix} \end{split}$$

#### Infinite horizon case: stationary distribution

$$\theta^{\star} = \arg \max_{\theta} \frac{1}{T} \sum_{t=1}^{T} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})} [r(\mathbf{s}_{t}, \mathbf{a}_{t})] \rightarrow E_{(\mathbf{s}, \mathbf{a}) \sim p_{\theta}(\mathbf{s}, \mathbf{a})} [r(\mathbf{s}, \mathbf{a})]$$
(in the limit as  $T \rightarrow \infty$ 

what if  $T = \infty$ ?

does  $p(\mathbf{s}_t, \mathbf{a}_t)$  converge to a stationary distribution?

 $\mu = p_{\theta}(\mathbf{s}, \mathbf{a})$ stationary distribution  $(\mathcal{T} - \mathbf{I})\mu = 0$  $\mu = \mathcal{T}\mu$  $\mu$  is eigenvector of  $\mathcal{T}$  with eigenvalue 1! stationary = the (always exists under some regularity conditions) same before and after transition state-action transition operator  $\mathbf{a}_1$  $\mathbf{a}_3$  $\mathbf{a}_2$  $\begin{array}{c|c} & \downarrow \\ \hline \mathbf{(s_3)} \end{array} \mid \begin{array}{c} \mathbf{(s_{t+1})} \\ \mathbf{(s_{t+1})} \end{array} \right) = \mathcal{T} \begin{pmatrix} \mathbf{s}_t \\ \mathbf{a}_t \end{array} \right) \quad \left(\begin{array}{c} \mathbf{s}_{t+k} \\ \mathbf{a}_{t+k} \end{array}\right) = \mathcal{T}^k \begin{pmatrix} \mathbf{s}_t \\ \mathbf{a}_t \end{array} \right)$  $\mathbf{S}_1$  $\mathbf{S}_2$ 

#### Expectations and stochastic systems

$$\begin{aligned} \theta^{\star} &= \arg \max_{\theta} E_{(\mathbf{s},\mathbf{a}) \sim p_{\theta}(\mathbf{s},\mathbf{a})} [r(\mathbf{s},\mathbf{a})] \\ &\text{infinite horizon case} \end{aligned} \qquad \begin{aligned} \theta^{\star} &= \arg \max_{\theta} \sum_{t=1}^{I} E_{(\mathbf{s}_{t},\mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t},\mathbf{a}_{t})} [r(\mathbf{s}_{t},\mathbf{a}_{t})] \\ &\text{finite horizon case} \end{aligned}$$

#### In RL, we almost always care about expectations



$$r(\mathbf{x}) - not \text{ smooth}$$
  
 $\pi_{\theta}(\mathbf{a} = \text{fall}) = \theta$   
 $E_{\pi_{\theta}}[r(\mathbf{x})] - smooth \text{ in } \theta$ 

 $\pi$ 

#### Outline

- Utilities to MDPs
- Value Iteration
- Policy Extraction
- Policy Iteration
- Convergence Analysis

#### Human Utilities



#### Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment (elicitation) of human utilities:
  - Compare a prize A to a standard lottery  $L_p$  between
    - "best possible prize"  $u_+$  with probability p
    - "worst possible catastrophe"  $u_{-}$  with probability 1-p
  - Adjust lottery probability p until indifference: A  $\sim L_p$
  - Resulting p is a utility in [0,1]





#### Example: Human Rationality?

• Famous example of Allais (1953)

- A: [0.8, \$4k; 0.2, \$0]
- B: [1.0, \$3k; 0.0, \$0]
- C: [0.2, \$4k; 0.8, \$0]
- D: [0.25, \$3k; 0.75, \$0]
- Most people prefer B > A, C > D
- But if U(\$0) = 0, then
  - B > A ⇒ U(\$3k) > 0.8 U(\$4k) = \$3200



#### Markov Decision Process



#### Non-Deterministic Search



#### Example: Grid World

- A maze-like problem
  - The agent lives in a grid
  - Walls block the agent's path
- Noisy movement: actions do not always go as planned
  - 80% of the time, the action North takes the agent North

(if there is no wall there)

- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
  - Small "living" reward each step (can be negative)
  - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards



#### Grid World Actions

#### Deterministic Grid World



#### Stochastic Grid World



#### Markov Decision Processes

- An MDP is defined by:
  - A set of states  $s \in S$
  - A set of actions  $a \in A$
  - A transition function T(s, a, s')
    - Probability that a from s leads to s', i.e., P(s' | s, a)
    - Also called the model or the dynamics
  - A reward function R(s, a, s')
    - Sometimes just R(s) or R(s')
  - A start state
  - Maybe a terminal state



#### [Demo – gridworld manual intro (L8D1)]

#### Video of Demo Gridworld Manual Intro



#### Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal

policy  $\pi^*: S \rightarrow A$ 

- A policy  $\pi$  gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent



Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

#### **Optimal Policies**



R(s) = -0.01







R(s) = -0.03



#### Utilities of Sequences



#### Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later?

[0, 0, 1] or [1, 0, 0]



### Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially



## Discounting

- How to discount?
  - Each time we descend a level, we multiply in the discount once
- Why discount?
  - Think of it as a gamma chance of ending the process at every step
  - Also helps our algorithms converge
- Example: discount of 0.5
  - U([1,2,3]) = 1\*1 + 0.5\*2 + 0.25\*3
  - U([1,2,3]) < U([3,2,1])



### Quiz: Discounting

• Given:



- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For  $\gamma = 1$ , what is the optimal policy?



• Quiz 2: For  $\gamma$  = 0.1, what is the optimal policy?



• Quiz 3: For which  $\gamma$  are West and East equally good when in state d?

### Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
  - Finite horizon: (similar to depth-limited search)
    - Terminate episodes after a fixed T steps (e.g. life)
    - Gives nonstationary policies (π depends on time left)
  - Discounting: use  $0 < \gamma < 1$

$$U([r_0,\ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)



### **Optimal Quantities**

- The value (utility) of a state s:
  - V<sup>\*</sup>(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):

Q<sup>\*</sup>(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

• The optimal policy:  $\pi^*(s) = optimal action from state s$ 


# Snapshot of Demo – Gridworld V Values

| 00 | 0         | Gridworl | d Display |        |
|----|-----------|----------|-----------|--------|
|    | 0.64 )    | 0.74 ▸   | 0.85 )    | 1.00   |
|    | 0.57      |          | •<br>0.57 | -1.00  |
|    | ▲<br>0.49 | ∢ 0.43   | ▲<br>0.48 | ∢ 0.28 |
|    | VALUES    | AFTER 1  | LOO ITERA | ATIONS |

## Snapshot of Demo – Gridworld Q Values



## Example: Racing



# Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*



# Racing Search Tree

## **MDP Search Trees**

• Each MDP state projects an expectimax-like search tree



# Recap: Defining MDPs

- Markov decision processes:
  - Set of states S
  - Start state s<sub>0</sub>
  - Set of actions A
  - Transitions P(s'|s,a) (or T(s,a,s'))
  - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
  - Policy = Choice of action for each state
  - Utility = sum of (discounted) rewards



# Racing Search Tree

# Outline

- Utilities to MDPs
- Value Iteration
- Policy Extraction
- Policy Iteration
- Convergence Analysis

# Solving MDPs



## Racing Search Tree



# Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
  - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
  - Idea: Do a depth-limited computation, but with increasing depths until change is small
  - Note: deep parts of the tree eventually don't matter if  $\gamma < 1$



#### Values of States

Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s,a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$

## **Time-Limited Values**

- Key idea: time-limited values
- Define  $V_k(s)$  to be the optimal value of s if the game ends in k more time steps
  - Equivalently, it's what a depth-k expectimax would give from s





| 0 | 0        | Gridworl | d Display |      |
|---|----------|----------|-----------|------|
|   |          |          |           |      |
|   | <b>^</b> | <b>^</b> | <b>^</b>  |      |
|   | 0.00     | 0.00     | 0.00      | 0.00 |
|   |          |          |           |      |
|   |          |          |           |      |
|   | 0.00     |          | 0.00      | 0.00 |
|   |          |          |           |      |
|   |          |          |           |      |
|   | 0.00     | 0.00     | 0.00      | 0.00 |
|   |          |          |           |      |

VALUES AFTER 0 ITERATIONS

| 0 | 0    | Gridworl  | d Display                          |       |
|---|------|-----------|------------------------------------|-------|
| ſ | •    | •<br>0.00 | 0.00 >                             | 1.00  |
|   | •    |           |                                    |       |
|   | 0.00 |           | <ul><li>• 0.00</li><li>•</li></ul> | -1.00 |
|   | 0.00 | 0.00      | 0.00                               | 0.00  |

VALUES AFTER 1 ITERATIONS

| 00 | 0         | Gridworl | d Display |       |
|----|-----------|----------|-----------|-------|
|    | •         | 0.00 →   | 0.72 →    | 1.00  |
|    | •<br>0.00 |          | •         | -1.00 |
|    | <b>^</b>  | <b>^</b> |           |       |
|    | 0.00      | 0.00     | 0.00      | 0.00  |
|    |           |          |           | •     |

VALUES AFTER 2 ITERATIONS

| 000 |      | Gridworl  | d Display |       |
|-----|------|-----------|-----------|-------|
| 0.0 | 00 → | 0.52 →    | 0.78 →    | 1.00  |
| 0.0 | 00   |           | •<br>0.43 | -1.00 |
| 0.0 | 00   | •<br>0.00 | •<br>0.00 | 0.00  |
| v   | ALUF | S AFTER   | 3 TTERA   | PTONS |

| 000 | )         | Gridworl | d Display |        |
|-----|-----------|----------|-----------|--------|
|     | 0.37 →    | 0.66 →   | 0.83 )    | 1.00   |
|     | ▲<br>0.00 |          | •<br>0.51 | -1.00  |
|     | •<br>0.00 | 0.00 →   | •<br>0.31 | ∢ 0.00 |
|     | VAT.IIF   | S AFTER  | 4 TTERA   | TTONS  |

| 000    | Gridworl | d Display |        |
|--------|----------|-----------|--------|
| 0.51 ) | 0.72 )   | 0.84 )    | 1.00   |
|        |          | <b>^</b>  |        |
| 0.27   |          | 0.55      | -1.00  |
|        |          | <b>^</b>  |        |
| 0.00   | 0.22 →   | 0.37      | ∢ 0.13 |
| VALU   | ES AFTER | 5 ITERA   | LIONS  |

| 000                       | Gridworl | d Display |        |  |
|---------------------------|----------|-----------|--------|--|
| 0.59 )                    | 0.73 )   | 0.85 )    | 1.00   |  |
| •<br>0.41                 |          | •<br>0.57 | -1.00  |  |
| • 0.21                    | 0.31 )   | •<br>0.43 | ∢ 0.19 |  |
| VALUES AFTER 6 ITERATIONS |          |           |        |  |

| 000       | Gridworl | d Display |        |
|-----------|----------|-----------|--------|
| 0.62      | 0.74 →   | 0.85 →    | 1.00   |
| •<br>0.50 |          | •<br>0.57 | -1.00  |
| •<br>0.34 | 0.36 )   | ▲<br>0.45 | ∢ 0.24 |
| VALU      | ES AFTER | 7 ITERA   | FIONS  |

| 00 | 0                         | Gridworl | d Display |        |  |
|----|---------------------------|----------|-----------|--------|--|
|    | 0.63 )                    | 0.74 )   | 0.85 )    | 1.00   |  |
|    | •<br>0.53                 |          | •<br>0.57 | -1.00  |  |
|    | ▲<br>0.42                 | 0.39 →   | ▲<br>0.46 | ∢ 0.26 |  |
|    | VALUES AFTER 8 ITERATIONS |          |           |        |  |

| ○ ○ ○ Gridworld Display   |        |           |        |
|---------------------------|--------|-----------|--------|
| 0.64 →                    | 0.74 → | 0.85 )    | 1.00   |
| •<br>0.55                 |        | •<br>0.57 | -1.00  |
| ▲<br>0.46                 | 0.40 → | ▲<br>0.47 | ◀ 0.27 |
| VALUES AFTER 9 ITERATIONS |        |           |        |

| 00 | Gridworld Display          |        |          |        |  |
|----|----------------------------|--------|----------|--------|--|
|    |                            |        |          |        |  |
|    | 0.64 →                     | 0.74 → | 0.85 →   | 1.00   |  |
|    | <b>^</b>                   |        | <b>^</b> |        |  |
|    | 0.56                       |        | 0.57     | -1.00  |  |
|    | <b>^</b>                   |        | <b>^</b> |        |  |
|    | 0.48                       | ∢ 0.41 | 0.47     | ∢ 0.27 |  |
|    | VALUES AFTER 10 ITERATIONS |        |          |        |  |

| Gridworld Display          |       |        |           |        |  |
|----------------------------|-------|--------|-----------|--------|--|
| 0                          | .64 ) | 0.74 ▸ | 0.85 )    | 1.00   |  |
| 0                          | .56   |        | •<br>0.57 | -1.00  |  |
| o                          | .48   | ◀ 0.42 | •<br>0.47 | ∢ 0.27 |  |
| VALUES AFTER 11 ITERATIONS |       |        |           |        |  |

| 0 0 | Cridworld Display          |        |          |        |  |  |  |
|-----|----------------------------|--------|----------|--------|--|--|--|
|     |                            |        |          |        |  |  |  |
|     | 0.64 )                     | 0.74 ) | 0.85 )   | 1.00   |  |  |  |
|     | <b>^</b>                   |        | <b>^</b> |        |  |  |  |
|     | 0.57                       |        | 0.57     | -1.00  |  |  |  |
|     | <b>^</b>                   |        | <b>^</b> |        |  |  |  |
|     | 0.49                       | ◀ 0.42 | 0.47     | ∢ 0.28 |  |  |  |
|     | VALUES AFTER 12 ITERATIONS |        |          |        |  |  |  |

| 0 0                         | Gridworl | d Display | -      |  |  |
|-----------------------------|----------|-----------|--------|--|--|
| 0.64)                       | 0.74 →   | 0.85 )    | 1.00   |  |  |
| •<br>0.57                   |          | •<br>0.57 | -1.00  |  |  |
| ▲<br>0.49                   | ∢ 0.43   | ▲<br>0.48 | ∢ 0.28 |  |  |
| VALUES AFTER 100 ITERATIONS |          |           |        |  |  |

## Computing Time-Limited Values



#### Value Iteration



## Value Iteration

- Start with  $V_0(s) = 0$ : no time steps left means an expected reward sum of zero
- Given vector of  $V_k(s)$  values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S<sup>2</sup>A)
- Theorem: will converge to unique optimal values
  - Basic idea: approximations get refined towards optimal values
  - Policy may converge long before values do












# Outline

- Utilities to MDPs
- Value Iteration
- Policy Extraction
- Policy Iteration
- Convergence Analysis

## Policy Extraction



# Computing Actions from Values

- Let's imagine we have the optimal values V\*(s)
- How should we act?
  - It's not obvious!
- We need to do a mini-expectimax (one step)

| 0.95 ▶       | 0.96 ▶ | 0.98 ♪ | 1.00  |
|--------------|--------|--------|-------|
| <b>0</b> .94 |        | ∢ 0.89 | -1.00 |
| •<br>0.92    | ∢ 0.91 | ∢ 0.90 | 0.80  |

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

• This is called policy extraction, since it gets the policy implied by the values

# Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
  - Completely trivial to decide!

 $\pi^*(s) = \arg\max_a Q^*(s,a)$ 



• Important lesson: actions are easier to select from q-values than values!

# Policy Methods



## Problems with Value Iteration

• Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

- Problem 1: It's slow O(S<sup>2</sup>A) per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values



#### k=12

| C C Gridworld Display |                            |        |          |        |  |
|-----------------------|----------------------------|--------|----------|--------|--|
|                       |                            |        |          |        |  |
|                       | 0.64 )                     | 0.74 ) | 0.85 )   | 1.00   |  |
|                       | <b>^</b>                   |        | <b>^</b> |        |  |
|                       | 0.57                       |        | 0.57     | -1.00  |  |
|                       | <b>^</b>                   |        | <b>^</b> |        |  |
|                       | 0.49                       | ◀ 0.42 | 0.47     | ∢ 0.28 |  |
|                       | VALUES AFTER 12 ITERATIONS |        |          |        |  |

Noise = 0.2 Discount = 0.9 Living reward = 0

## k=100

| Gridworld Display           |        |           |        |  |
|-----------------------------|--------|-----------|--------|--|
| 0.64 )                      | 0.74 → | 0.85 )    | 1.00   |  |
| •<br>0.57                   |        | •<br>0.57 | -1.00  |  |
| •<br>0.49                   | ∢ 0.43 | ▲<br>0.48 | ∢ 0.28 |  |
| VALUES AFTER 100 TTERATIONS |        |           |        |  |

Noise = 0.2Discount = 0.9 Living reward = 0

- Alternative approach for optimal values:
  - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
  - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
  - Repeat steps until policy converges
- This is policy iteration
  - It's still optimal!
  - Can converge (much) faster under some conditions

## Policy Evaluation



### **Fixed Policies**

Do the optimal action



Do what  $\pi$  says to do



- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy  $\pi(s)$ , then the tree would be simpler only one action per state
  - ... though the tree's value would depend on which policy we fixed

## Utilities for a Fixed Policy

• Another basic operation: compute the utility of a state s under a fixed (generally  $\bigwedge s$  non-optimal) policy  $\pi(s)$ 

π(s),s

- Define the utility of a state s, under a fixed policy  $\pi$ :  $V^{\pi}(s) =$  expected total discounted rewards starting in s and following  $\pi$
- Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

## Policy Evaluation

- How do we calculate the V's for a fixed policy  $\pi$ ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$
  
$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Efficiency: O(S<sup>2</sup>) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
  - Solve with your favorite linear system solver



### Example: Policy Evaluation

Always Go Right

Always Go Forward



## Example: Policy Evaluation

#### Always Go Right

| -10.00 | 100.00  | -10.00 |
|--------|---------|--------|
| -10.00 | 1.09 🕨  | -10.00 |
| -10.00 | -7.88 🕨 | -10.00 |
| -10.00 | -8.69 ▶ | -10.00 |

#### Always Go Forward



| <i>s</i> <sub>1</sub> | <i>S</i> <sub>2</sub> | <i>S</i> <sub>3</sub> | S <sub>4</sub> | <i>S</i> <sub>5</sub> | <i>s</i> <sub>6</sub> | <i>S</i> <sub>7</sub> |
|-----------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|
|                       |                       |                       |                |                       |                       |                       |

$$P(s'|s,a_1) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} P(s'|s,a_2) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

2 Deterministic Actions



We will shortly be interested in not just evaluating the value of a single policy, but finding an optimal policy. Given this it is informative to think about properties of the potential policy space. First for the Mars rover example [7 discrete states (location of rover); 2 actions: Left or Right]

How many deterministic policies are there?

- Pick one  $2 \,/\, 14 \,/\, 7^2 \,/\, 2^7$ 

Is the optimal policy (one with highest value) for a MDP unique?

• Yes / No / Not Sure



We will shortly be interested in not just evaluating the value of a single policy, but finding an optimal policy. Given this it is informative to think about properties of the potential policy space. First for the Mars rover example [7 discrete states (location of rover); 2 actions: Left or Right]

How many deterministic policies are there?

• Pick one 2 / 14 /  $7^2$  /  $2^7$  (max total policies  $|A|^{|S|}$ )

Is the optimal policy (one with highest value) for a MDP unique?

 Yes / No / Not Sure there may be two actions that have the same optimal value function

- Dynamics:  $p(s_6|s_6, a_1) = 0.5, p(s_7|s_6, a_1) = 0.5...$
- Reward: for all actions, +1 in state  $s_1$ , +10 in state  $s_7$ , 0 otherwise
- Let  $\pi(s) = a_1 \ \forall s$  , assume  $V_k$ =[1 0 0 0 0 0 10] for  $k = 1, \gamma = 0.5$
- Calculate  $V_{k+1}(s_6)$ ?

- Dynamics:  $p(s_6|s_6, a_1) = 0.5, p(s_7|s_6, a_1) = 0.5...$
- Reward: for all actions, +1 in state  $s_1$ , +10 in state  $s_7$ , 0 otherwise
- Let  $\pi(s) = a_1 \ \forall s$  , assume  $V_k$ =[1 0 0 0 0 0 10] for  $k = 1, \gamma = 0.5$
- Calculate  $V_{k+1}(s_6)$ ?

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')$$
$$V_{k+1}(s_6) = r(s_6, a_1) + \gamma * 0.5 * V_k(s_6) + \gamma * 0.5 * V_k(s_7)$$

 $V_{k+1}(s_6) = 0 + 0.5 * 0.5 * 0 + .5 * 0.5 * 10$ 

 $V_{k+1}(s_6)=2.5$ 



- Evaluation: For fixed current policy  $\pi$ , find values with policy evaluation:
  - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[ R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
  - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

- There exists a unique optimal value function
- Optimal policy for a MDP in an infinite horizon problem (agent acts forever) is
  - Deterministic
  - Stationary (does not depend on time step)
  - Unique?

Not necessarily, may have state-actions with identical optimal values

$$Q^{\pi_{i}}(s, a) = |R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi_{i}}(s')$$
$$\max_{a} Q^{\pi_{i}}(s, a) \ge R(s, \pi_{i}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i}(s)) V^{\pi_{i}}(s') = V^{\pi_{i}}(s)$$
$$\pi_{i+1}(s) = \arg \max_{a} Q^{\pi_{i}}(s, a)$$

Suppose we take  $\pi_{i+1}$  for one step and follow  $\pi_i$  thereafter:

• Expected sum of rewards is at least as good as if we had always followed  $\pi_i$ Hence  $\pi_{i+1}$  improves over  $\pi_i$ 

#### Monotonic Improvement in Policy Iteration

• Definition:

 $V^{\pi_1} \geq V^{\pi_2}: V^{\pi_1}(s) \geq V^{\pi_2}(s), orall s \in S$ 

• Proposition  $V^{\pi_{i+1}} \ge V^{\pi_i}$  with strict inequality if  $\pi_i$  is suboptimal, since we can find a  $\pi_{i+1}$  we get from policy improvement on  $\pi_i$ 

#### Monotonic Improvement in Policy Iteration

$$V^{\pi_{i}}(s) \leq \max_{a} Q^{\pi_{i}}(s, a)$$

$$= \max_{a} R(s, a) + \gamma \sum_{\substack{s' \in S \\ s' \in S}} P(s'|s, a) V^{\pi_{i}}(s')$$

$$= R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i+1}(s)) V^{\pi_{i}}(s') //by \text{ the definition of } \pi_{i+1}$$

$$\leq R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i+1}(s)) \left( \max_{a'} Q^{\pi_{i}}(s', a') \right)$$

$$= R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i+1}(s)) \left( R(s', \pi_{i+1}(s')) + \gamma \sum_{s'' \in S} P(s''|s', \pi_{i+1}(s')) V^{\pi_{i}}(s'') \right)$$

$$\vdots$$

$$= V^{\pi_{i+1}}(s)$$

#### Policy Iteration as Bellman Recursion

Bellman backup operator  $B^{\pi}$  for a particular policy is defined as

$$B^{\pi}V(s) = R^{\pi}(s) + \gamma \sum_{s' \in S} P^{\pi}(s'|s)V(s)$$

Policy evaluation amounts to computing the fixed point of  $B^{\pi}$ To do policy evaluation, repeatedly apply operator until V stops changing

$$V^{\pi} = B^{\pi}B^{\pi}\cdots B^{\pi}V$$

To do policy improvement

$$\pi_{k+1}(s) = \arg\max_{a} R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^{\pi_k}(s')$$

## Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
  - Every iteration updates both the values and (implicitly) the policy
  - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
  - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
  - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
  - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

## Summary: MDP Equations

• Value iteration equation:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

• Policy evaluation equation:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[ R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

• Policy iteration equation:

٦

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

#### The Bellman Equations



## Convergence when Solving MDPs

- Redefine value update as general Bellman Utility update
  - Recursive update or utility (sum of discounted reward)  $V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[ R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$   $\downarrow$   $U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum P(s'|s, a) U_i(s')$
- How does this converge?
  - Assume fixed policy  $\pi_i(s)$ .
  - *R(s)* is the short term reward of being in *s*

## Convergence when Solving MDPs

- How does this update rule converge?  $U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum P(s'|s, a) U_i(s')$
- Re-write update:  $U_{i+1} \leftarrow BU_i$ 
  - *B* is a linear operator (like a matrix)
  - *U* is a vector
- Interested in delta between Utilities:

$$||BU_{i+1} - BU_i|| \le \gamma ||U_{i+1} - U_i||$$

Bellman Recursion

 $||U_{i+1} - U_i||$ 

v' = Av

#### **Detour:** Convergence of Bellman backup

Let  $||V - V'|| = \max_{s} |V(s) - V'(s)|$  be the infinity norm

$$\begin{split} \|BV_{k} - BV_{j}\| &= \left\| \max_{a} \left( R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_{k}(s') \right) - \max_{a'} \left( R(s, a') + \gamma \sum_{s' \in S} P(s'|s, a') V_{j}(s') \right) \right\| \\ &\leq \max_{a} \left\| \left( R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_{k}(s') - R(s, a) - \gamma \sum_{s' \in S} P(s'|s, a) V_{j}(s') \right) \right\| \\ &= \max_{a} \left\| \gamma \sum_{s' \in S} P(s'|s, a) (V_{k}(s') - V_{j}(s')) \right\| \\ &\leq \max_{a} \left\| \gamma \sum_{s' \in S} P(s'|s, a) \| V_{k} - V_{j} \| \right) \\ &= \max_{a} \left\| \gamma \| V_{k} - V_{j} \| \sum_{s' \in S} P(s'|s, a) \right\| \\ &= \gamma \| V_{k} - V_{j} \| \end{split}$$

Note: Even if all inequalities are equalities, this is still a contraction if  $\gamma < 1$ 

## Convergence when Solving MDPs

• How does this delta converge?

$$|BU_{i+1} - BU_i|| \le \gamma ||U_{i+1} - U_i||$$

- Utility error estimate reduced by  $\gamma$  each iteration:
- Total Utilities are bounded,

$$\sum_{i=0}^{\infty} R_{max} \gamma^i \qquad \pm rac{R_{max}}{(1-\gamma)}$$

- Consider minimum initial error:
  - (Max norm)
- Max error: reduce by discount each step.

$$\|U_0 - U\| \le \frac{2R_{max}}{(1-\gamma)}$$

#### Utility Error Bound

• Error at step 0:  $\|U_0 - U\| \leq \frac{2R_{max}}{(1 - \gamma)}$ 

• Error at step N: 
$$\|U_N - U\| = \gamma^N \cdot \frac{2R_{max}}{(1 - \gamma)} < \epsilon$$

• Steps for error below  $\epsilon$ :

$$N = \frac{\log\left(\frac{2R_{max}}{\epsilon(1-\gamma)}\right)}{\log\left(\frac{1}{\gamma}\right)}$$

## MDP Convergence Visualized

- Value iteration converges exponentially (with discount factor)
- Policy iteration will converge linearly to 0.


## Summary: MDP Algorithms

- So you want to....
  - Compute optimal values: use value iteration or policy iteration
  - Compute values for a particular policy: use policy evaluation
  - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
  - They basically are they are all variations of Bellman updates
  - They all use one-step lookahead expectimax fragments
  - They differ only in whether we plug in a fixed policy or max over actions

## Acknowledgements

Slides adapted from

CS 188 UC Berkeley Pieter Abbeel, Dan Klein et al.

CS 285 UC Berkeley Sergey Levine

CSC 498 Univ of Toronto Animesh Garg