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Abstract. Inverse Reinforcement Learning (IRL) allows a robot to generalize
from demonstrations to previously unseen scenarios by learning the demonstra-
tor’s reward function. However, in multi-step tasks, the learned rewards might
be delayed and hard to directly optimize. We present Sequential Windowed In-
verse Reinforcement Learning (SWIRL), a three-phase algorithm that partitions a
complex task into shorter-horizon subtasks based on Switched Linear Dynamical
transitions that occur consistently across demonstrations. SWIRL then learns a
sequence of local reward functions that describe the motion between transitions.
Once these reward functions are learned, SWIRL applies Q-learning to compute
a policy that maximizes the rewards. We compare SWIRL (demonstrations to
segments to rewards) with Supervised Policy Learning (SPL - demonstrations to
policies) and Maximum Entropy IRL (MaxEnt-IRL demonstrations to rewards)
on standard Reinforcement Learning benchmarks: Parallel Parking with noisy dy-
namics, Two-Link acrobot, and a 2D GridWorld. We find that SWIRL converges
to a policy with similar success rates (60%) in 3x fewer time-steps than MaxEnt-
IRL, and requires 5x fewer demonstrations than SPL. In physical experiments
using the da Vinci surgical robot, we evaluate the extent to which SWIRL gener-
alizes from linear cutting demonstrations to cutting sequences of curved paths.

1 Introduction

One of the goals of learning from demonstrations (LfD) is to learn policies that gener-
alize beyond the provided examples and are robust to perturbations in initial conditions,
the environment, and sensing noise [1]. Inverse Reinforcement Learning (IRL) is a pop-
ular framework, where the goal is to infer an unknown reward function from a set of
demonstrations [2, 3, 4]. Once a reward is learned, given novel instances of a task, a
policy can be computed by optimizing for this reward function using an approach like
Reinforcement Learning (RL) [5, 4].

In IRL, a task is modeled as an MDP with a single unknown function that maps
states and actions to scalar values. This model is limited in the way that it can represent
sequential tasks, tasks where a robot must reach a sequence of intermediate state-space
goals in a particular order. The sequential structure can facilitate faster learning because
the inferred reward may be delayed and reflect a quantity observed after all of the goals
are reached, and thus, making it very difficult to optimize directly. Furthermore, there
may not exist a single stationary policy for a given state-space (a time-invariant map



between states and actions) that achieves all of the goals in sequence, e.g., a figure-8
trajectory in the x,y plane.

To address this problem, one approach is to divide the task into segments with local
reward functions. In existing work on multi-step IRL, this sequential structure is defined
manually [2]. We propose an approach that automatically learns sequential structure
and assigns local reward functions to segments. The combined problem is nontrivial
because solving k independent problems neglects the shared structure in the value func-
tion during the policy learning phase (e.g., a common failure state). However, jointly
optimizing over the segmented problem inherently introduces a dependence on history,
namely, any policy must complete step i before step i+ 1. This potentially leads to an
exponential overhead of additional states.

Sequential Windowed Inverse Reinforcement Learning (SWIRL) is based on a model
for sequential tasks that represents them as a sequence of reward functions Rseq =
[R1, ...,Rk] and transition regions (subsets of the state-space) G = [ρ1, ...,ρk] such that
R1 is the reward function until ρ1 is reached, after which R2 becomes the reward and so
on. SWIRL assumes that demonstrations have locally linear dynamics w.r.t a provided
feature space, are locally optimal (as in IRL), and all demonstrations reach each ρ ∈ G
in the same sequence. In the first phase of the algorithm, SWIRL infers the transition re-
gions using a kernelized variant of an algorithm proposed in our prior work [6, 7]. In the
second phase, SWIRL uses the inferred transition regions to segment the set of demon-
strations and applies IRL locally to each segment to construct the sequence of reward
functions Rseq. Once these rewards are learned, SWIRL computes a policy using an RL
algorithm (Q-Learning) over an augmented state-space that indicates the sequence of
previously reached reward transition regions. We show that this augmentation has an
additional space complexity independent of the state-space and linear in the number of
rewards.
Our contributions are:
1. A three-phase algorithm, SWIRL, to learn policies for sequential robot tasks.
2. An extension of the Transition State Clustering algorithm that relaxes the local lin-

earity assumption using kernelization.
3. A novel state-space augmentation to enforce sequential dependencies using binary

indicators of the previously completed segments, which can be efficiently stored and
computed based on the first phase of SWIRL.

4. Simulation and physical experiments comparing SWIRL with Supervised Learning
and MaxEnt-IRL.

2 Related Work

The seminal work of Abbeel and Ng [4] explored learning from demonstrations using
Inverse Reinforcement Learning. In [4], the authors used an IRL algorithm to infer the
demonstrator’s reward function and then an RL algorithm to optimize that reward. Our
work re-visits this two-phase algorithm in the context of sequential tasks. It is well-
established that RL problems often converge slowly in complex tasks when rewards are
sparse and not “shaped” appropriately [8, 9]. These issues are exacerbated in sequential
tasks where a sequence of goals must be reached. Related to this problem, Kolter et al.
studied Hierarchical Apprenticeship Learning to learn bipedal locomotion [2], where
the algorithm is provided with a hierarchy sub-tasks. These sub-tasks are not learned



from data and assumed as given, but the algorithm infers a reward function from demon-
strations. SWIRL applies to a restricted class of tasks defined by a sequence of reward
functions and state-space goals.

There are have been some proposals in robotics to learn motion primitives from
data. The approaches assume that reward functions are given (or the problem can be
solved with planning-based methods). Motion primitives are example trajectories (or
sub-trajectories) that bias search in planning towards paths constructed with these prim-
itives [10, 11, 12]. Much of the initial work in motion primitives considered manu-
ally identified segments, but recently, Niekum et al. [13] proposed learning the set of
primitives from demonstrations using the Beta-Process Autoregressive Hidden Markov
Model (BP-AR-HMM). Calinon et al. [14] proposed the task-parametrized movement
model with GMMs for action segmentation. Both Niekum and Calinon consider the
motion planning setting in which analytical planning methods are used to solve a task
and not RL. Konidaris et al. studied the primitives in the RL setting [15]. However, this
approach assumed that the reward function was given and not learned from demonstra-
tions as in SWIRL. Another relevant result is from Ranchod et al. [16], who use an IRL
model to define the primitives, in contrast to the problem of learning a policy after IRL.

3 Problem Statement and Model

3.1 Notation

Consider a finite-horizon Markov Decision Process (MDP):

M = 〈S,A,P(·, ·),R,T 〉,

where S is the set of states (continuous or discrete), A is the set of actions (finite and
discrete), P : S×A 7→ Pr(S) is the dynamics model that maps states and actions to a
probability density over subsequent states, T is the time-horizon, and R is a reward
function that maps trajectories of length T to scalar values.

Sequential tasks are tasks composed of sequences of sub-tasks. There is a sequence
Rseq = [R1, ...,Rk], where each Ri : S×A 7→ R. Associated with each Ri is a transition
region ρi ⊆ S. Each trajectory accumulates a reward Ri until it reaches the transition
ρi (defined as the first time at which the robot’s state is in ρk). This process continues
until ρk is reached. A robot is deemed successful when all of the ρi ∈ G are reached
in sequence. Further, a robot is optimal when it maximizes the expected cumulative
reward and is successful. Given observations of an optimally acting robot through a set
of demonstration trajectories D = {d1, ...,dk}, can we infer Rseq and G?

Assumptions: We make the following assumptions: (1) the robot’s dynamics are lin-
early parametrized (i.e., linear in some feature space), (2) every demonstration is gen-
erated from k distinct stationary, locally optimal policies (maximized w.r.t Ri on the
infinite horizon), (3) every demonstration visits each ρi in the same sequence, and (4)
each Ri is a quadratic of the form.

Remarks: The key challenge in this problem is determining when a transition occurs–
identifying the points in time in each trajectory at which the robot reaches a ρi and
transitions the reward function. The natural first question is whether this is identifi-
able, that is, whether it is even theoretically possible to determine whether a transition



ρi → ρi+1 has occurred after obtaining an infinite number of observations. Trivially,
this is not guaranteed when Ri+1 = Ri, where it would be impossible to identify a tran-
sition purely from the robot’s behavior (i.e., no change in reward, implies no change in
behavior). Perhaps surprisingly, this is still not guaranteed even if Ri+1 6= Ri due to pol-
icy invariance classes [8]. Consider a reward function Ri+1 = 2Ri, which functionally
induce the same optimal behavior. Therefore, we consider a setting where all of the re-
wards in Rseq are distinct and are not equivalent w.r.t optimal policies. This formalism
is a special case of the Hierarchical Reinforcement Learning [17], where each of the
local rewards is a sub-goal and arrival at a ρ is a termination condition.

3.2 Linear-Gaussian Model

Leveraging the four earlier assumptions, we can define a class of sequential tasks for
which inference is tractable. The key insight is that under these three assumptions
demonstration trajectories take the form of Switched Linear-Gaussian systems. Param-
eter inference for such systems is well-studied [18]. A demonstration d is a trajectory of
state and action tuples [(s0,a0), ...,(sT ,aT )]. We first require some regularity assump-
tions on the demonstrations. Let D be a set of demonstrations {d1, ...,dN} of a sequential
task.

Consider the following system:

xt+1 = Axt +But +wt wt ∼ N(0,Σ) i.i.d

For quadratic rewards in the infinite horizon, the optimal policy is a linear state feedback
controller ut =−Cxt Given this model, suppose we wanted to control the robot to a final
state µi with a linear state-feedback controller Ci, the dynamical system that would
follow is:

x̂t+1 = (A−BCi)x̂t +wt ,

where x̂t = xt − µi. If this system is stable, it will converge to xt = µi as t → ∞. Now,
suppose that the system has the following switching behavior: when ‖xt − µi‖ ≤ ε ,
change the target state µi to µi+1. The resulting closed loop dynamics are:

Ai = (A−BCi)

xt+1 = Aixt +wt : Ai ∈ {A1, ...,Ak}.

The equation above defines an SLDS. This model maps back to the general case where
the sequence [µ1, ...,µk] and their tolerances [ε1, ...,εk] define the regions [ρ1, ...,ρk].
Each ρi corresponds to regions where transitions occur Ai 6= A j. Intuitively, a change in
the reward function results in a change of policy (Ci) for a locally optimal agent.

4 Sequential Windowed Inverse Reinforcement Learning

This section describes an algorithm to infer the parameters for the proposed model.

Algorithm Description Let D be a set of demonstration trajectories {d1, ...,dN} of a
task with a delayed reward. SWIRL can be described in terms of three sub-algorithms:
Inputs: Demonstrations D, Dynamics (Optional) P



1. Sequence Learning: Given D, SWIRL segments the task into k sub-tasks whose
start and end are defined by arrival at a set of transitions G = [ρ1, ...,ρk].

2. Reward Learning: Given G and D, SWIRL associates a local reward function with
the segment resulting in a sequence of rewards Rseq.

3. Policy Learning: Given Rseq and G, SWIRL applies reinforcement learning for I
iterations to learn a policy for the task π .

Outputs: Policy π

Phase I. Sequence Learning

SWIRL first infers [ρ1, ...,ρk] using an extension of our prior work on robust task seg-
mentation [6, 7]. The overall procedure is summarized in Phase I.

Identifying Transitions Based on the assumptions described earlier, we formulate
an SLDS inference problem. Suppose there are k sub-tasks, there will be k dynamical
regimes. Consider a single demonstration trajectory xt as a noisy observation from a
dynamical system:

xt+1 = Aixt +wt : Ai ∈ {A1, ...,Ak},

where wt describes an i.i.d noise process. We want to identify the set of times t across all
demonstrations where at t the dynamics matrix is Ai and at t+1 it is A j, j 6= i. We model
the transitions as instantaneous, and thus, in each demonstration, we have a discrete set
of transition time points {0, ...,T}.

This can be inferred with expectation-maximization (EM) (refer to [19, 20, 21, 6,
7] for details). In typical EM formulations, one must specify the number of mixture
components k before hand. However, we apply results from Bayesian non-parametric
statistics and jointly solve for the component parameters and the number of components
using a Dirichlet Process [22]. Using a DP, the number of components grows with the
complexity of the observed data.

Relaxing Local Linearity In [6, 7], we assumed that each segment has locally linear
dynamics. We relax the linear dynamics assumption with a kernel embedding of the tra-
jectories. SWIRL does not require learning the exact regimes Ai, it only needs to detect
changes in dynamics regime. The basic idea is to apply Kernelized PCA to the features
before learning the transitions–a technique used in Computer Vision [23]. By changing
the kernel function (i.e., the similarity metric between states), we can essentially change
the definition of local linearity.

Let κ(xi,x j) define a kernel function over the states. For example, if κ is the radial

basis function (RBF), then: κ(xi,x j) = e
−‖xi−x j‖22

2σ . κ naturally defines a matrix M where:
Mi j = κ(xi,x j). The top p′ eigenvalues define a new embedded feature vector for each
ω in Rp′ . We can now apply the algorithm above in this embedded feature space.

Transition Times To Regions We would like to be able to aggregate the transition
times into state-space conditions for reward transitions [ρ1, ...,ρk]. In the proposed
model, these regions corresponded to a Euclidean ball around a target state µi, ‖x−
µi‖ ≤ ε . Transition times correspond to the event when the trajectory arrives at the



Algorithm 1: Sequence Learning
Data: Demonstration D

1 Fit a DP-SLDS model to D and identify the set of transitions Θ , defined as all (xt , t)
where (xt+1, t +1) has a different most likely dynamical regime.

2 Fit a DP-GMM to the states in Θ .
3 Prune clusters that do not have one transition from all demonstrations.
4 The result of is G = [ρ1,ρ2, ...,ρm] where each ρ is a disjoint ellipsoidal region of the

state-space and time interval.
Result: G

boundary of the ball. To each of these transition times, there is a corresponding transi-
tion state–the last state before the dynamics switched.

The distribution of the transition states can be used to approximate the location of µi
and the radius ε . In general, this will be a complex distribution, and we approximate this
with a Gaussian Mixture Model with k mixture components {m1, ...,mk}. As before, we
use a DP to non-parametrically set k. Our prior work [6], describes several techniques
to improve the robustness of this model such as pruning clusters that do not have at least
one transition from each demonstration. Thus, the result is the set of transition regions:
G = [ρ1,ρ2, ...,ρk].

Remarks: In principle, the two-step algorithm (transition learning and region learn-
ing) could be described as a single graphical model. However, the coupled problem is
quite challenging from an inference perspective and would require techniques such as
MCMC. The proposed approach is related to variational approximations where the two
parts are decoupled and treated as independent.

Phase II. Reward Learning

After Phase I, each demonstration is segmented into k sub-sequences. Phase II uses
the learned [ρ1, ...,ρk] to construct the local rewards [R1, ...,Rk] for the task. As per our
model, each Ri is a quadratic parametrized by a positive semi-definite matrix Q. SWIRL
has two variants: when a dynamics model P is given, SWIRL applies Maximum Entropy
IRL, and when the dynamics model is null (not-provided), SWIRL estimates the reward
using the feature covariance. The Algorithm is summarized in Phase 2.

Model-based For the model-based approach, we use Maximum Entropy Inverse Re-
inforcement Learning (MaxEnt-IRL) [24]. The idea is to model every demonstration di
as a noisy sample from an optimal policy. In other words, each di that is observed is a
noisy observation of some hypothetical d∗.

Since each di is a path through a possibly discrete state and action space, we cannot
simply average them to find d∗. Instead, we have to model trajectories that the system
is likely to visit. This can be formalized with the following probability distribution:

P(di|R) ∝ exp{
T∑

t=0

R(st)}.

Paths with a higher cumulative reward are more likely.



Algorithm 2: Reward Learning
Data: Demonstration D and sub-goals [ρ1, ...,ρk]

1 Based on the transition states, segment each demonstration di into k sub-sequences where
the jth is denoted by di[ j].

2 If dynamics model is available, apply MaxEnt-IRL to each set of sub-sequences 1...k.
3 If the dynamics model is not available compute Equation 1 for each set of subsequences.

Result: Rseq

MaxEnt-IRL uses the following linear parametrized representation:

R(s,a) = xT
θ ,

where x is the state vector. The resulting form is:

P(di|R) ∝ exp{
T∑

t=0

xT
θ},

and MaxEnt-IRL proposes an algorithm to infer the θ that maximizes the posterior
likelihood. This posterior inference procedure requires a dynamics model, which we
can use a previously known model or the learned Ai from the previous section.

SWIRL applies MaxEnt-IRL to each segment of the task but with a small modifica-
tion to learn quadratic rewards instead of linear ones. Let µi be the centroid of the next
transition region. We want to learn a reward function of the form:

Ri(x) =−(x−µi)
T Q(x−µi).

for a positive semi-definite Q (negated since this is a negative quadratic cost). With
some re-parametrization, this reward function can be written as:

Ri(x) =−
d∑

j=1

d∑
l=1

qi jx[ j]x[l].

which is linear in the feature-space y = x[ j]x[l]:

Ri(x) = θ
T y.

In this form, the problem can be analytically solved with techniques proposed in [25].
SWIRL applies MaxEnt-IRL to the sub-sequences of demonstrations between 0 and ρ1,
and then from ρ1 to ρ2 and so on. The result is an estimated local reward function Ri
modeled as a linear function of states that is associated with each ρi.
Model-free: Local Quadratic Rewards When a dynamics model is not available,
SWIRL uses a model-free approach for reward construction similarly motivated by the
quadratic rewards. The role of the reward function is to guide the robot to the next
transition region ρi. A straight forward thing approach is for each segment i, we can
define a reward function as follows:

Ri(x) =−‖x−µi‖2
2,



which is just the Euclidean distance to the centroid.
A problem with using Euclidean distance directly is that it uniformly penalizes dis-

agreement with µ in all dimensions. During different stages of a task, some features
will likely naturally vary more than others–this is learned through IRL. To account for
this, we derive a reasonable Q that is independent of the dynamics:

Q[ j, l] = Σ
−1
x ,

which is the inverse of the covariance matrix of all of the state vectors in the segment:

Q[ j, l] = (

end∑
t=start

xxT )−1, (1)

which is a p× p matrix defined as the covariance of all of the states in the segment
i− 1 to i. Intuitively, if a feature has low variance during this segment, deviation in
that feature from the desired target it gets penalized. This is exactly the Mahalonabis
distance to the next transition.

For example, suppose one of the features j measures the distance to a reference
trajectory ut . Further, suppose in step one of the task the demonstrator’s actions are
perfectly correlated with the trajectory (Qi[ j, j] is low where variance is in the distance)
and in step two the actions are uncorrelated with the reference trajectory (Qi[ j, j] is
high). Thus, Q will respectively penalize deviation from µi[ j] more in step one than in
step two.

Phase III. Policy Learning

In Phase III, SWIRL uses the learned transitions [ρ1, ...,ρk] and Rseq as rewards for
a Reinforcement Learning algorithm. In this section, we describe learning a policy π

given rewards Rseq and an ordered sequence of transitions G.
However, this problem is not trivial since solving k independent problems neglects

potential shared value structure between the local problems (e.g., a common failure
state). Furthermore, simply taking the aggregate of the rewards can lead to inconsisten-
cies since there is nothing enforcing the order of operations. The key insight is that a
single policy can be learned jointly over all segments over a modified problem where
the state-space with additional variables that keep track of the previously achieved seg-
ments. To do so, we require an MDP model that also captures the history of the process.

MDPs with Memory RL algorithms apply to problems that are specified as MDPs.
The challenge is that some sequential tasks may not be MDPs. For example, attaining a
reward at ρi depends on knowing that the reward at goal ρi−1 was attained. In general,
to model this dependence on the past requires MDPs whose state-space also includes
history.

Given a finite-horizon MDP M as defined in Section 3, we can define an MDP MH
as follows. Let H denote set of all dynamically feasible sequences of length smaller
than T comprised of the elements of S. Therefore, for an agent at any time t, there is a
sequence of previously visited states Ht ∈H. The MDP MH is defined as:

MH = 〈S×H,A,P′(·, ·),R(·, ·),T 〉.



Algorithm 3: Policy Learning
Data: Transition States G, Reward Sequence Rseq, exploration parameter ε

1 Initialize Q(
(s

v
)
,a) randomly

2 foreach iter ∈ 0, ..., I do
3 Draw s0 from initial conditions
4 Initialize v to be [0, ...,0]
5 Initialize j to be 1
6 foreach t ∈ 0, ...,T do
7 Choose best action a based on Q or random action w.p ε .
8 Observe Reward R j
9 Update state to s′ and Q via Q-Learning update

10 If s′ is ∈ ρ j update v[ j] = 1 and j = j+1

Result: Policy π

For this MDP, P′ not only defines the transitions from the current state s 7→ s′, but also
increments the history sequence Ht+1 = Ht t s. Accordingly, the parametrized reward
function R is defined over S, A, and Ht+1.

MH allows us to address the sequentiality problem since the reward is a function
of the state and the history sequence. However, without some parametrization of Ht ,
directly solving this MDPs with RL is impractical since it adds an overhead of O(eT )
states.
Policy Learning Using our sequential task definition, we know that the reward transi-
tions (Ri to Ri+1) only depend on an arrival at the transition state ρi and not any other
aspect of the history. Therefore, we can store a vector v, a k dimensional binary vector
(v ∈ {0,1}k) that indicates whether a transition state i ∈ 0, ...,k has been reached. This
vector can be efficiently incremented when the current state s ∈ ρi+1. Then, the addi-
tional complexity of representing the reward with history over S×{0,1}k is only O(k)
instead of exponential in the time horizon.

The result is an augmented state-space
(s

v

)
to account for previous progress. Over

this state-space, we can apply Reinforcement Learning algorithms to iteratively con-
verge to a successful policy for a new task instance. SWIRL applies Q-Learning with a
Radial Basis Function value function representation to learn a policy π over this state-
space and the reward sequence Rseq. This is summarized in Algorithm 3.

5 Experiments

We evaluate SWIRL with a series of standard RL benchmarks and in a physical experi-
ment on the da Vinci surgical robot.

5.1 Methodology

All of the experimental scenarios followed a similar pattern: (1) start with an RL prob-
lem with a delayed reward, (2) generate N demonstration trajectories with motion plan-
ning in simulated scenarios and kinethestic demonstration in the physical experiments,
(3) apply SWIRL, (4) evaluate the performance of the policy as a function of the I iter-
ations. For all convergence curves presented, we show the probability of task success as



a function of the number of RL iterations. For convergence rate, we measure the Area
Under Curve of the learning curve (i.e., cumulative expected reward over the learning
epoch).
The algorithms considered in the experiments are:
1. Q-Learning: This applies a Q-Learning algorithm with the same hyper-parameter

setting as SWIRL.
2. Pure MaxEnt-IRL: Given N demonstrations this learns a reward using MaxEnt-

IRL and no hierarchical structure. Then, it applies Q-Learning with the same hyper-
parameter setting as SWIRL until convergence. (Only Phase II and III)

3. SVM: Given N demonstrations this learns a policy using a multi-class SVM classi-
fier. There is no further learning after training. (Directly to Policy)

4. SWIRL (Model-Based) and SWIRL (Model-Free)

5.2 Parallel Parking

We constructed a parallel parking scenario for a robot with non-holonomic dynamics
and two obstacles. The robot can control its speed (‖ẋ‖+ ‖ẏ‖) and heading (θ ), and
observe its x position, y position, orientation, and speed in a global coordinate frame.
If the robot parks between the obstacles, i.e., 0 velocity within a 15◦ tolerance, the task
is a success and the robot receives a reward of 1. The robot’s dynamics are noisy and
with probability 0.1 will randomly add or subtract 5◦ degrees from the steering angle.
If the robot collides with one of the obstacle or does not park in 200 timesteps the
episode ends. The baseline approach is modeling the entire problem as an MDP with a
quadratic reward function at the target state (where the robot parks). For comparison,
we use this reward function for Q-Learning and infer a quadratic reward function using
MaxEnt-IRL. We call this domain Parallel Parking with Full Observation (PP-FO) (see
Figure 1).

Next, we made the Parallel Parking domain a little harder. We hid the velocity state
from the robot, so the robot only sees (x,y,θ). As before, if the robot collides with one
of the obstacle or does not park in 200 timesteps the episode ends. We call this domain
Parallel Parking with Partial Observation (PP-PO).

We generated 5 demonstrations using an RRT motion planner (assuming determinis-
tic dynamics) and applied SWIRL to learn the segments. Figure 1 illustrates the demon-
strations and the learned segments. There are two intermediate goals corresponding to
positioning the car and orienting the car correctly before reversing.

Performance In the fully observed problem, compared to MaxEnt-IRL, the model-
based SWIRL converges to a policy with a 60% success rate with about 3x fewer time-
steps. The gains for the model-free version are more modest with a 50% reduction. The
supervised policy learning approach achieves a success rate of 47% and the baseline
RL approach achieves a success rate of 36% after 250000 time-steps.

The baseline Q-Learning approach directly tries to learn a sequence of actions to
minimize the quadratic cost around the target state. This leads to a lot of exploration
since the robot must first make “negative” progress (pulling forward). SWIRL im-
proves convergence since it structures the exploration through the segmentation. The
local reward functions are better shaped to guide the car towards its short term goal.
This focuses the exploration on solving the short term problem first. MaxEnt-IRL miti-
gates some of the problems since it rewards states based on their estimated cost-to-go,



Fig. 1. This plot illustrates (left) the 5 demonstration trajectories for the parallel parking task, and
(right) the sub-goals learned by SWIRL.

Fig. 2. Performance on a parallel parking task with noisy dynamics with full state observations
(position, orientation, and velocity), partial observation (only position and orientation), and trans-
fer (randomly permuting the action space). Success is measured in terms of the probability that
the car successfully parked, and (M) denotes whether the approach used the dynamics model. In
the fully observed case, both the model-based and model-free SWIRL algorithms converge faster
than MaxEnt-IRL and quickly outperforms the SVM. In the partially observed case, MaxEnt-
IRL, Q-Learning, and the SVM fail–while SWIRL succeeds. Both techniques also demonstrate
comparable transferability to MaxEnt-IRL when the domain’s dynamics are perturbed.

but as the time-horizon increases the estimates of this become nosier–leading to worse
performance (see technical report for a characterization [26]).

In the partial observation problem (PP-PO), there is no longer a stationary policy
that can achieve the reward. The techniques that model this problem with a single MDP
all fail to converge. The learned segments in SWIRL help disambiguate dependence on
history. After 250000 time-steps, the policy learned with model-based SWIRL has a
70% success rate in comparison to a <10% success rate for the baseline RL, MaxEnt-
IRL, and 0% for the SVM.

Finally, we explore how well the constructed rewards transfer if the dynamics are
perturbed in the fully observed setting. We expect MaxEnt-IRL to transfer well be-
cause it learns a delayed reward, which tends to encode success conditions and not
task-specific details. After constructing the rewards, we randomly perturbed the sys-
tem dynamics by introducing a bias towards turning left. We find that the model-based
SWIRL technique transfers to this domain comparably to MaxEnt-IRL until the task
is so different that the sub-goals learned with SWIRL are no longer informative. The
model-free SWIRL algorithm converges more slowly; requiring 20% more time-steps
to converge to the same success rate.



Fig. 3. Acrobot: We measured the performance of rewards constructed with SWIRL and the alter-
natives. We find that SWIRL (model-based and model-free) converges faster than MaxEnt-IRL,
Q-Learning, and the SVM. Furthermore, SWIRL requires less demonstrations, which we measure
by comparing the performance of the alternatives after a fixed 50000 time-steps and with varied
input demonstrations. We also vary the task parameters by changing the size of the second link of
the pendulum and find that the learned rewards are robust to this variation (as before comparing
the performance of the alternatives after a fixed 50000 time steps). MaxEnt-IRL shows improved
transfer performance since once the task has changed enough the segments learned during the
demonstrations may not be informative and may even hurt performance if they are misleading.

5.3 Acrobot

This domain consists of a two-link pendulum with gravity and with torque controls
on the joint. The dynamics are noisy and there are limits on the applied torque. The
robot has 1000 timesteps to raise the arm above horizontal (y = 1 in the images). If
the task is successful and the robot receives a reward of 1. Thus, the expected reward
is equivalent to the probability that the current policy will successfully raise the arm
above horizontal. We generated N = 5 demonstrations for the Acrobot task and applied
segmentation. These demonstrations were generated by training the Q-Learning base-
line to convergence and then sampling from the learned policy. In Figure 3, we plot the
performance of the all of the approaches. We include a comparison between a Linear
Multiclass SVM and a Kernelized Multiclass SVM for the policy learning alternative.
In this example, we find that applying MaxEnt-IRL does not improve the convergence
rate. For this state-space, MaxEnt-IRL merely recovers the reward used in the original
RL problem. On the other hand, added segments using SWIRL improve convergence
rates.

We also vary the number of input demonstrations to SWIRL and find that it requires
fewer demonstrations than policy learning and MaxEnt-IRL to converge to a more re-
liable policy. It takes about 10x more demonstrations for the supervised learning ap-
proach to reach comparable reliability. Finally, we find that SWIRL does not sacrifice
much transferability. We learn the rewards on the standard pendulum, and then during
learning we vary the size of the second link in the pendulum. We plot the success rate
(after a fixed 50000 steps) as a function of the increase link size. SWIRL is signifi-
cantly more robust than supervised policy learning to the increase in link size and has a
significantly higher success rate than IRL for small perturbations in link size.



5.4 Summary of Simulated Experiments

Table 1 summarizes the results of our experiments in terms of convergence rate and
maximum attained reward on the Parallel Parking domain (with and without partial
observation), Acrobot domain, and additional experiments using variants of GridWorld.
GridWorld is a two-room map where the robot has to reach two target states in sequence
to get the full reward. GridWorld-2 is a substantially harder map with “pits” (i.e., instant
failure if reached). The Two-Bridges domain is another GridWorld based environment
in which there is a short “unsafe” path between start and goal and a longer “safe” path
(which is actually the optimal solution). Please refer to the arXiv report [26] for more
details.

Table 1. This table summarizes the convergence rate (AUC) and max reward (MAX) attained by
a Q-learning robot using the alternatives after a fixed number of iterations.

GridWorld GridWorld-2 Two-Bridges PP(FO) PP(PO) Acrobot
Max AUC Max AUC Max AUC Max AUC Max AUC Max AUC

Q-Learning 0.984 10.976 0.861 15.440 1.090 16.270 0.911 109.76 0.311 27.419 0.944 3.447
MaxEnt-IRL 0.987 299.556 0.861 16.956 0.759 16.270 0.950 299.556 0.444 33.128 0.920 44.111

SWIRL (MF) 1.830 322.125 1.764 14.070 1.751 18.953 0.991 164.127 0.934 123.115 0.906 20.935
SWIRL (MB) 1.835 514.113 1.827 28.632 1.577 17.141 0.965 514.113 0.958 333.897 0.987 65.512

5.5 Physical Experiments with the da Vinci Surgical Robot

In physical experiments, we apply SWIRL to learn to cut along a marked line in gauze
similar to Murali et al. [27]. This is a multi-step problem where the robot starts from a
random initial state, has to move to a position that allows it to start the cut, and then cut
along the marked line. We provide the robot 5 kinesthetic demonstrations by positioning
the end-effector and then following various marked straight lines. The state-space of the
robot included the end-effector position (x,y) as well as a visual feature indicating its
pixel distance to the marked line (pix). This visual feature is constructed using OpenCV
thresholding for the black line. Since the gauze is planar, the robot’s actions are unit
steps in the ±x,±y axes. Figure 4 illustrates the training and test scenarios.

As expected, the algorithm identifies two consistent changes in local linearity cor-
responding to the positioning step and the termination. The learned reward function for
the position step minimizes x,y, pix distance to the starting point and for the cutting step
the reward function is more heavily weighted to minimize the pix distance. We defined
task success as positioning within 1 cm of the starting position of the line and during
the following stage, missing the line by no more than 1 cm (estimated from pixel dis-
tance). Since we did not have a dynamics model, we evaluated the model-free version
of SWIRL, Q-Learning, and the SVM. SWIRL was the only technique able to achieve
the combined task. This is because the policy for this task is non-stationary, and SWIRL
is the only approach of the alternatives that can learn such a policy.

We evaluated the learned tracking policy to cut gauze. We ran trials on different
sequences of curves and straight lines. Out of the 15 trials, 11 were successful. 2 failed
due to SWIRL errors (tracking or position was imprecise) and 2 failed due to cutting
errors (gauze deformed causing the task to fail). 1 of the failures was on the 4.5 cm
curvature line and 3 were one the 3.5 cm curvature line.



Fig. 4. We collected demonstrations on the da Vinci surgical robot kinesthetically. The task was
to cut a marked line on gauze. We demonstrated the location of the line without actually cutting
it. The goal is to infer that the demonstrator’s reward function has two steps: position at a start
position before the line, and then following the line. We applied this same reward to curved lines
that started in different positions.
Table 2. With 5 kinesthetic demonstrations of following marked straight lines on gauze, we ap-
plied SWIRL to learn to follow lines of various curvature. After 25 episodes of exploration, we
evaluated the policies on the ability to position in the correct cutting location and track the line.
We compare to SVM on each individual segment. SVM is comparably accurate on the straight
line (training set) but does not generalize well to the curved lines.

Curvature Radius (cm) SVM Pos. Error (cm) SVM Tracking Error (cm) SWIRL Pos. Error (cm) SWIRL Tracking Error (cm)

straight 0.46 0.23 0.42 0.21
4.0 0.43 0.59 0.45 0.33
3.5 0.51 1.21 0.56 0.38
3.0 0.86 3.03 0.66 0.57
2.5 1.43 - 0.74 0.87
2.0 - - 0.87 1.45
1.5 - - 1.12 2.44

Next, we characterized the repeatability of the learned policy. We applied SWIRL to
lines of various curvature spanning from straight lines to a curvature radius of 1.5 cm.
Table 2 summarizes the results on lines of various curvature. While the SVM approach
did not work on the combined task, we evaluated its accuracy on each individual step
to illustrate the benefits of SWIRL. On following straight lines, SVM was comparable
to SWIRL in terms of accuracy. However, as the lines become increasingly curved,
SWIRL generalizes more robustly than the SVM.

6 Discussion and Future Work

SWIRL is a three-phase algorithm that first segments a task, learns local rewards, and
then learns a policy. Experimental results suggest that sequential segmentation can in-
deed improve convergence in RL problems with delayed rewards. Results suggest that
SWIRL is robust to perturbations in initial conditions, the environment, and sensing



noise. This paper formalizes the interaction and composability of the three phases (se-
quence, reward, and policy learning). In future work, we will explore extensions to
each of the phases and quantify the degree of generalization. We will explore how the
Q-Learning step could be replaced with Guided Policy Search, Policy Gradients, and
optimal control. We will modify the segmentation algorithm to incorporate more com-
plex transition conditions and allow for sub-optimal demonstrations. We will explore
more robotic tasks including suturing, surgical knot tying, and assembly. Another av-
enue for future work is modeling complex tasks as hierarchies of MDPs.
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