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What is Implicit Neural Representation?

Occupancy Nets, CVPR 20

Voxels Point Clouds Mesh

3D Representations in Visual Computing
ü Discrete Representations
ü Intuitive Spatial Map

✗ Memory
✗ Arbitrary Topologies
✗ Connectivity Structures
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What is Implicit Neural Representation?

𝑉 = 𝑓(𝑟)

Coordinates

𝑓:ℝ! → ℝ"
Values

Implicit 
Representation

ü Continuous Representations
ü “Infinite” Spatial Resolution
ü Memory depends on signal complexity

✗ Not Analytically Tractable

Images: 
𝑟: (x, y), 𝑉: (r, g, b)

3D Scenes and Shapes (as in NeRFs) 
𝑟: (𝑥, 𝑦, 𝑧, 𝜃, 𝜙),  𝑉: (𝑟, 𝑔, 𝑏, 𝜎)

Trajectories
𝑟: (𝑞)!" generalized coordinates  
𝑉: utility function



Implicit Representations in Visual Computing

Shape reconstruction Rendering Novel view synthesis

Occupancy Networks: Learning 3D Reconstruction in Function Space. In CVPR, 2019.
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes. In CVPR, 2021.

NeRF: Representing Scenes as Neural Radance Fields for View Synthesis. In ECCV, 2020.



Implicit Neural Representations in Robotics

Grasp detection Visuomotor control Generalization in Manipulation

Synergies Between Affordance and Geometry: 6-DOF Grasp Detection via Implicit Representations. In RSS, 2021.
3D Neural Scene Representations for Visuomotor Control. In CoRL, 2021.

Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation. In ICRA, 2022.



Trajectories & 
Value Functions

Objects & Poses Differentiable 
contact sim

SimulationPerception Action

Robot Learning with Implicit Representations
Algorithmic Development (perception and control)

+ Improved Simulation for Contact-rich Manipulation

Work in progress
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NERF 2 NERF

Lily Goli, Daniel Rebain, Animesh Garg, Andrea Tagliasacchi

Registering Partially Overlapping NeRFs



Motivation
Collected NeRFs

In Memory

NeRF 
Acquisition

1

NeRF-2-NeRF 
Registration

2 Estimated Object 
Poses

Interactive & 
Interactable 
Simulation

Combination
&

Rendering &
…

3



What are Neural Radiance Fields (NeRFs)?
Composition & RenderingTraining an MLP 



Registration Problem in NeRFs



Unsupervised Training to Find T - Objective Function?

Distance between positions of 
corresponding point 

coordinates after applying T
Error (NeRF1(T*R), NeRF2(R)) +Loss Function = 

Challenges:

Even if learned T is optimal: Error between rendered images
is NOT zero!

The scenes are only partially overlapping.

Corresponding points lie in 2D space of rendered images
Transformation T lies in 3D space

We need a robust function applied to 
MSE

To make it more robust
=>

We derive equivalent 3D Points 
using Triangulation

=>

View/RGB Difference Correspondence Difference



Focusing on First Loss Term (View Difference)

Robust Registration of 2D views. Modeling the problem in 2D setting: 

• Delta will not be zero even if TL = TG, in some query points!
Just focus on object of interest -> many loss functions, mostly use manual thresholding

Barron CVPR 2019



Random 
view 1

NeRF 1 without transform 
with sample points

Random 
view 2

NeRF 1 with transform 
with sample points

Overlap of fixed NeRF2 
and moving NeRF1

Fixed NeRF 2 (target)

Registration via Radiance Matching



Different Lightings (Failure Case)

If we use only radiance for registration, 
then different lighting models on the object fail!
• Fix: Use Geometry features rather than radiance

Sampling in the moving NeRF              target view (uniformly lighter)



Geometry Network via Distillation
We train a 3 layer network supervised by:



Results 

Random 
view 1

(moving) NeRF 1 - initial 
pose 

Random 
view 2

NeRF 1 - registration 
iterations

Overlay of fixed NeRF 2 
and moving NeRF 1

(fixed) NeRF 2 - target
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NEURAL MOTION FIELDS

Yun-Chun Chen, Adithya Murali, Bala Sundaralingam, 
Wei Yang, Animesh Garg, Dieter Fox

Encoding Grasp Trajectories as Implicit Value Functions



Grasp pose detection

Existing Grasping Methods

6-DOF GraspNet: Variational Grasp Generation for Object Manipulation. In ICCV, 2019.
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Grasp pose detection

Existing Grasping Methods

6-DOF GraspNet: Variational Grasp Generation for Object Manipulation. In ICCV, 2019.

Find inverse kinematic solutions

Plan a collision-free trajectory

Execute the open-loop trajectory



Existing Grasping Methods

6-DOF Grasping for Target-driven Object Manipulation in Clutter. In ICRA, 2020.

6-DOF GraspNet: Variational Grasp Generation for Object Manipulation. In ICCV, 2019.

Contact-GraspNet: Efficient 6-DOF Grasp Generation in Cluttered Scenes. In ICRA, 2021.

+ Table-top object grasping

+ Grasping in clutter

+ Bin-picking
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Existing Grasping Methods

6-DOF Grasping for Target-driven Object Manipulation in Clutter. In ICRA, 2020.

6-DOF GraspNet: Variational Grasp Generation for Object Manipulation. In ICCV, 2019.

Contact-GraspNet: Efficient 6-DOF Grasp Generation in Cluttered Scenes. In ICRA, 2021.

+ Table-top object grasping

- Infer a finite discrete number of grasps

+ Grasping in clutter

+ Bin-picking

Grasp affordances are a continuous manifold



Neural Motion Fields
Goal: 
Learn a value function that can be used to plan a trajectory for grasping



Neural Motion Fields
Goal: 
Learn a value function that can be used to plan a trajectory for grasping

Value function: 
Map a gripper pose to its path length to a grasp

Grasp pose !!

Start pose !"
(a) An example trajectory. (b) Anchor grasps.

Fig. 2: (a) An example trajectory planned by RRT. Red represents
longer path length. Green represents shorter path length. (b) Visual-
ization of the selected anchor grasps.

III. NEURAL MOTION FIELDS

A. Learning from Grasp Trajectories
Given an object point cloud P and a gripper pose g, our

goal is to learn a model that approximates the value function
V (g, P ). We propose Neural Motion Fields, which consists of
two modules: a path length module and a collision module.
Path length prediction. As shown in Figure 1, the path length
module first takes as input the object point cloud P and uses the
point cloud encoder Epath-length to encode a feature embedding
fpath-length = Epath-length(P ) 2 Rd, where d is the dimension of
the feature fpath-length. Then, the point cloud feature fpath-length
and the gripper pose g are concatenated and passed to the path
length prediction network Fpath-length to predict the path length
Vpred(g, P ) for the gripper pose g.1

To train the path length module, we adopt an `1 loss function,
which is defined as

Lpath-length = kVpred(g, P )� Vgt(g, P )k1, (2)

where Vpred(g, P ) denotes the predicted path length of the
gripper pose g and Vgt(g, P ) denotes the ground truth.

We visualize the learned value function using a cost map
visualization as shown in Figure 3. We show two cost maps. In
each cost map, we select a grasp pose. We keep the orientation
and vary the x and y positions of the grasp pose to compose
poses. We then query the path lengths of the composed poses
using the learned model. Each input pose is represented by a
point in R3 and is colored by its predicted path length (red
means longer path length, while green means shorter).
Collision prediction. Having the path length module alone is
insufficient as the model does not explicitly penalize collisions
between the gripper and the object of interest. To address this
issue, we develop a collision module as shown in Figure 1
(same input as the path length module, but mapped to a different
output using a different set of network weights).

Given an object point cloud P and a gripper pose g, the
collision module first uses the point cloud encoder Ecollision to
encode the point cloud feature fcollision = Ecollision(P ) 2 Rk,

1The gripper pose g is first converted to a vector in R9 which is the
contatenatation of the 6D rotation representation [17] of g and the translation
vector in R3 of g. The 9D vector will then be concatenated with the point
cloud feature fpath-length for path length prediction.

Fig. 3: We visualize two cost maps of a box object. In each cost
map, we select a grasp pose. We keep the orientation, vary the x
and y positions, and query the path length of the composed gripper
pose using our model. Each gripper pose is represented by a point in
3D. Red represents longer path length (higher in z). Green represents
shorter path length (lower in z).

where k is the dimension of the feature fcollision. Then, the point
cloud feature fcollision and the gripper pose g are concatenated
and passed to the collision prediction network Fcollision to
predict the probability ppred(g, P ) of the gripper pose g being
in collision with the object.

To train the collision model, we adopt a standard binary
cross-entropy loss function, which is defined as

Lcollision = pgt(g, P ) log ppred(g, P )

+ (1� pgt(g, P )) log(1� ppred(g, P )),
(3)

where ppred(g, P ) is the predicted collision probability and
pgt(g, P ) is the ground truth.
B. Generating Grasp Motion

Given the path length value function represented by the path
length module and the collision value function represented by
the collision module, we formulate the grasp cost Cgrasp as

Cgrasp(gt, P ) = (1� V (gt, P )) + C(gt, P ), (4)

where V (gt, P ) is the predicted path length for the gripper
pose gt, C(gt, P ) is the collision cost of the gripper pose gt
computed by thresholding p(gt, P ) � ⌧ , ⌧ is a hyperparameter,
and P is the object point cloud. In our work, we set ⌧ = 0.25.

We then optimize the grasp cost Cgrasp along with the
cost Cstorm to ensure smooth collision-free motions using
STORM [1], which is a GPU-based MPC framework:

min
ẍt2[0,H]

Cstorm(q) + Cgrasp (5)

Additional details on Cstorm is available in [1].
IV. EXPERIMENTS

A. Experimental Setup
Dataset. We experiment with four box objects from the dataset
provided by [8] and one bowl object from the ACRONYM
dataset [3]. We first subsample a set of 16 grasp poses around
the object using farthest point sampling as shown in Figure 2b.
We then apply a 180 degree rotation along the z-axis of the
gripper pose to get the flipped counterparts. The selected 32
grasps are then used as the goal poses for trajectory data
collection. We randomly sample a gripper pose with respect
to one of the goal poses and use the RRT [5] planner from
OMPL [12] to plan a trajectory between the two poses. We
note that our data generation pipeline is agnostic to the choice
of the motion planning algorithm and other planners are also
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Map a gripper pose to its path length to a grasp

Gripper pose path length: 

Neural Motion Fields: Encoding Grasp Trajectories
as Implicit Value Functions

Yun-Chun Chen1,2,⇤ Adithyavairavan Murali1,⇤ Balakumar Sundaralingam1,⇤

Wei Yang1 Animesh Garg1,2 Dieter Fox1,3
1NVIDIA 2University of Toronto 3University of Washington ⇤Equal contribution

Abstract—The pipeline of current robotic pick-and-place meth-
ods typically consists of several stages: grasp pose detection,
finding inverse kinematic solutions for the detected poses, plan-
ning a collision-free trajectory, and then executing the open-loop
trajectory to the grasp pose with a low-level tracking controller.
While these grasping methods have shown good performance on
grasping static objects on a table-top, the problem of grasping
dynamic objects in constrained environments remains an open
problem. We present Neural Motion Fields, a novel object repre-
sentation which encodes both object point clouds and the relative
task trajectories as an implicit value function parameterized by
a neural network. This object-centric representation models a
continuous distribution over the SE(3) space and allows us to
perform grasping reactively by leveraging sampling-based MPC
to optimize this value function.

I. INTRODUCTION

Current robotic grasping approaches typically decompose the
task of grasping into several sub-components: detecting grasp
poses on point clouds [13, 14], finding inverse kinematics
solutions at these poses, solving collision-free trajectories
to pre-grasp standoff poses and finally executing open-loop
trajectories from standoff poses to the grasp poses [8, 9]. By
inferring a finite discrete number of grasp poses, such an
approach neglects the insight that object grasp affordances
are a continuous manifold. While this approach has yielded
tremendous progress in bin-picking and grasping unknown
objects on a table-top, reactive grasping of unknown objects
in constrained environments remains an open problem.

Implicit neural representations [6, 7, 10] have emerged as
a new paradigm for applications in rendering, view synthesis,
and shape reconstruction. Compared to traditional explicit
representations (e.g., point clouds and meshes), implicit neural
representations can represent continuous signals at arbitrarily
high resolutions. Motivated by implicit neural representations,
we propose to learn a value function that encodes robotic task
trajectories using a neural network. Our key insight is to map
each gripper pose in SE(3) to its trajectory path length as shown
in Figure 1. To train the model, we generate synthetic data of
grasping process by using a prior grasp dataset [8] and planning
trajectories with a RRT [5] motion planner. Once the model
training is done, we cast the learned value function as a cost
and leverage the Model Predictive Control (MPC) [1] algorithm
to query gripper poses in SE(3) with cost minimization. This
allows us to generate a kinematically feasible trajectory that
the robot can execute to reach a grasp on the object.

We benchmark our method on the grasping task and report
the success rate. In addition, we evaluate our model in two

Fig. 1: We present Neural Motion Fields that learns a value function
that can be queried to generate grasping motion. We use separate
network weights for predicting path lengths and collisions.

settings: static object poses and dynamic object poses, and
provide ablation studies under various settings. In summary,
our contributions include

1) We propose Neural Motion Fields, a novel formulation
of the grasp motion generation problem in SE(3) as a
continuous implicit representation.

2) We show that this learned object-centric representations
allows reactive grasp manipulation using MPC [1].

II. PROBLEM STATEMENT

Value function learning for grasping. We are interested in
learning a model that can be used to plan a kinematically
feasible trajectory for the robot to execute to grasp an object.
Specifically, we cast this task as a value function learning
problem. We assume that we are given a segmented object
point cloud P 2 RN⇥3, where N is the number of points in a
point cloud, and a gripper pose g 2 SE(3). The value function
V (g, P ) describes how far the gripper pose g is from a grasp
on the object. We use the path length of a gripper pose to
represent the value function.
Gripper pose path length. As shown in Figure 2a, given a
trajectory {gi}ti=0, where g0 denotes the end pose (grasp pose)
and gt denotes the start pose, the path length of the start pose
gt (denoted as V (gt)) is defined as the cumulative sum of
the average distance between two adjacent gripper poses [16],
which can be expressed by

V (gt) =
t�1X

i=0

1

m

X

x2M

k(Rix+ Ti)� (Ri+1x+ Ti+1)k, (1)

where Ri is the rotation of the gripper pose gi, Ti is the
translation of the gripper pose gi, m is the number of keypoints
of the gripper, and M is the set of keypoints of the gripper.

Grasp pose !!

Start pose !"
(a) An example trajectory. (b) Anchor grasps.

Fig. 2: (a) An example trajectory planned by RRT. Red represents
longer path length. Green represents shorter path length. (b) Visual-
ization of the selected anchor grasps.

III. NEURAL MOTION FIELDS

A. Learning from Grasp Trajectories
Given an object point cloud P and a gripper pose g, our

goal is to learn a model that approximates the value function
V (g, P ). We propose Neural Motion Fields, which consists of
two modules: a path length module and a collision module.
Path length prediction. As shown in Figure 1, the path length
module first takes as input the object point cloud P and uses the
point cloud encoder Epath-length to encode a feature embedding
fpath-length = Epath-length(P ) 2 Rd, where d is the dimension of
the feature fpath-length. Then, the point cloud feature fpath-length
and the gripper pose g are concatenated and passed to the path
length prediction network Fpath-length to predict the path length
Vpred(g, P ) for the gripper pose g.1

To train the path length module, we adopt an `1 loss function,
which is defined as

Lpath-length = kVpred(g, P )� Vgt(g, P )k1, (2)

where Vpred(g, P ) denotes the predicted path length of the
gripper pose g and Vgt(g, P ) denotes the ground truth.

We visualize the learned value function using a cost map
visualization as shown in Figure 3. We show two cost maps. In
each cost map, we select a grasp pose. We keep the orientation
and vary the x and y positions of the grasp pose to compose
poses. We then query the path lengths of the composed poses
using the learned model. Each input pose is represented by a
point in R3 and is colored by its predicted path length (red
means longer path length, while green means shorter).
Collision prediction. Having the path length module alone is
insufficient as the model does not explicitly penalize collisions
between the gripper and the object of interest. To address this
issue, we develop a collision module as shown in Figure 1
(same input as the path length module, but mapped to a different
output using a different set of network weights).

Given an object point cloud P and a gripper pose g, the
collision module first uses the point cloud encoder Ecollision to
encode the point cloud feature fcollision = Ecollision(P ) 2 Rk,

1The gripper pose g is first converted to a vector in R9 which is the
contatenatation of the 6D rotation representation [17] of g and the translation
vector in R3 of g. The 9D vector will then be concatenated with the point
cloud feature fpath-length for path length prediction.

Fig. 3: We visualize two cost maps of a box object. In each cost
map, we select a grasp pose. We keep the orientation, vary the x
and y positions, and query the path length of the composed gripper
pose using our model. Each gripper pose is represented by a point in
3D. Red represents longer path length (higher in z). Green represents
shorter path length (lower in z).

where k is the dimension of the feature fcollision. Then, the point
cloud feature fcollision and the gripper pose g are concatenated
and passed to the collision prediction network Fcollision to
predict the probability ppred(g, P ) of the gripper pose g being
in collision with the object.

To train the collision model, we adopt a standard binary
cross-entropy loss function, which is defined as

Lcollision = pgt(g, P ) log ppred(g, P )

+ (1� pgt(g, P )) log(1� ppred(g, P )),
(3)

where ppred(g, P ) is the predicted collision probability and
pgt(g, P ) is the ground truth.
B. Generating Grasp Motion

Given the path length value function represented by the path
length module and the collision value function represented by
the collision module, we formulate the grasp cost Cgrasp as

Cgrasp(gt, P ) = (1� V (gt, P )) + C(gt, P ), (4)

where V (gt, P ) is the predicted path length for the gripper
pose gt, C(gt, P ) is the collision cost of the gripper pose gt
computed by thresholding p(gt, P ) � ⌧ , ⌧ is a hyperparameter,
and P is the object point cloud. In our work, we set ⌧ = 0.25.

We then optimize the grasp cost Cgrasp along with the
cost Cstorm to ensure smooth collision-free motions using
STORM [1], which is a GPU-based MPC framework:

min
ẍt2[0,H]

Cstorm(q) + Cgrasp (5)

Additional details on Cstorm is available in [1].
IV. EXPERIMENTS

A. Experimental Setup
Dataset. We experiment with four box objects from the dataset
provided by [8] and one bowl object from the ACRONYM
dataset [3]. We first subsample a set of 16 grasp poses around
the object using farthest point sampling as shown in Figure 2b.
We then apply a 180 degree rotation along the z-axis of the
gripper pose to get the flipped counterparts. The selected 32
grasps are then used as the goal poses for trajectory data
collection. We randomly sample a gripper pose with respect
to one of the goal poses and use the RRT [5] planner from
OMPL [12] to plan a trajectory between the two poses. We
note that our data generation pipeline is agnostic to the choice
of the motion planning algorithm and other planners are also
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Fig. 2: (a) An example trajectory planned by RRT. Red represents
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ization of the selected anchor grasps.

III. NEURAL MOTION FIELDS

A. Learning from Grasp Trajectories
Given an object point cloud P and a gripper pose g, our

goal is to learn a model that approximates the value function
V (g, P ). We propose Neural Motion Fields, which consists of
two modules: a path length module and a collision module.
Path length prediction. As shown in Figure 1, the path length
module first takes as input the object point cloud P and uses the
point cloud encoder Epath-length to encode a feature embedding
fpath-length = Epath-length(P ) 2 Rd, where d is the dimension of
the feature fpath-length. Then, the point cloud feature fpath-length
and the gripper pose g are concatenated and passed to the path
length prediction network Fpath-length to predict the path length
Vpred(g, P ) for the gripper pose g.1

To train the path length module, we adopt an `1 loss function,
which is defined as

Lpath-length = kVpred(g, P )� Vgt(g, P )k1, (2)

where Vpred(g, P ) denotes the predicted path length of the
gripper pose g and Vgt(g, P ) denotes the ground truth.

We visualize the learned value function using a cost map
visualization as shown in Figure 3. We show two cost maps. In
each cost map, we select a grasp pose. We keep the orientation
and vary the x and y positions of the grasp pose to compose
poses. We then query the path lengths of the composed poses
using the learned model. Each input pose is represented by a
point in R3 and is colored by its predicted path length (red
means longer path length, while green means shorter).
Collision prediction. Having the path length module alone is
insufficient as the model does not explicitly penalize collisions
between the gripper and the object of interest. To address this
issue, we develop a collision module as shown in Figure 1
(same input as the path length module, but mapped to a different
output using a different set of network weights).

Given an object point cloud P and a gripper pose g, the
collision module first uses the point cloud encoder Ecollision to
encode the point cloud feature fcollision = Ecollision(P ) 2 Rk,

1The gripper pose g is first converted to a vector in R9 which is the
contatenatation of the 6D rotation representation [17] of g and the translation
vector in R3 of g. The 9D vector will then be concatenated with the point
cloud feature fpath-length for path length prediction.

Fig. 3: We visualize two cost maps of a box object. In each cost
map, we select a grasp pose. We keep the orientation, vary the x
and y positions, and query the path length of the composed gripper
pose using our model. Each gripper pose is represented by a point in
3D. Red represents longer path length (higher in z). Green represents
shorter path length (lower in z).

where k is the dimension of the feature fcollision. Then, the point
cloud feature fcollision and the gripper pose g are concatenated
and passed to the collision prediction network Fcollision to
predict the probability ppred(g, P ) of the gripper pose g being
in collision with the object.

To train the collision model, we adopt a standard binary
cross-entropy loss function, which is defined as

Lcollision = pgt(g, P ) log ppred(g, P )

+ (1� pgt(g, P )) log(1� ppred(g, P )),
(3)

where ppred(g, P ) is the predicted collision probability and
pgt(g, P ) is the ground truth.
B. Generating Grasp Motion

Given the path length value function represented by the path
length module and the collision value function represented by
the collision module, we formulate the grasp cost Cgrasp as

Cgrasp(gt, P ) = (1� V (gt, P )) + C(gt, P ), (4)

where V (gt, P ) is the predicted path length for the gripper
pose gt, C(gt, P ) is the collision cost of the gripper pose gt
computed by thresholding p(gt, P ) � ⌧ , ⌧ is a hyperparameter,
and P is the object point cloud. In our work, we set ⌧ = 0.25.

We then optimize the grasp cost Cgrasp along with the
cost Cstorm to ensure smooth collision-free motions using
STORM [1], which is a GPU-based MPC framework:

min
ẍt2[0,H]

Cstorm(q) + Cgrasp (5)

Additional details on Cstorm is available in [1].
IV. EXPERIMENTS

A. Experimental Setup
Dataset. We experiment with four box objects from the dataset
provided by [8] and one bowl object from the ACRONYM
dataset [3]. We first subsample a set of 16 grasp poses around
the object using farthest point sampling as shown in Figure 2b.
We then apply a 180 degree rotation along the z-axis of the
gripper pose to get the flipped counterparts. The selected 32
grasps are then used as the goal poses for trajectory data
collection. We randomly sample a gripper pose with respect
to one of the goal poses and use the RRT [5] planner from
OMPL [12] to plan a trajectory between the two poses. We
note that our data generation pipeline is agnostic to the choice
of the motion planning algorithm and other planners are also

STORM: An Integrated Framework for Fast Joint-Space Model-Predictive Control for Reactive Manipulation. In CoRL, 2022.



Ablation Study on Number of Trajectories

Static object poses Dynamic object poses

More data helps with fine-grained rotation error with non-stationary objects



Ablation Study on Number of Anchor Grasps

Anchor grasps

More data helps with snapping to multi-modal grasp prediction



Floating Object Demo
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GRASP’D

Dylan Turpin, Liquan Wang, Eric Heiden, Yun-Chun Chen,
Miles Macklin, Stavros Tsogkas, Sven Dickinson, Animesh Garg

Differentiable Contact-Rich Grasp Synthesis
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3. Non-smooth object geometry à SDF Dilation
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Motivation

Goal: Make SDF-based contact forces friendly to gradient-based optimization.
Why? Planning in high-dimensional contact-rich scenarios,
e.g., robotic grasping and manipulation with multi-finger hands.
Challenges & Proposed Solutions
An example application: Generating contact-rich grasps for high-DOF human and 
robotic hands.



Like this… But how?
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Proper gradient
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(i.e., in collision)
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Challenge #1: Contact sparsity

Proper gradient

Non-zero if object SDF at contact 
location is less than 0
(i.e., in collision)
and zero otherwise.

Leaky gradient

Gradient when not in collision is 
just scaled down by alpha.



Challenge #2: Local flatness

SDF ground truth is often computed from a mesh.
But surface normal is constant on faces,
so contact normal (computed as positional derivative of SDF) has 0 gradient.

Figure from Werling, K., Omens, D., Lee, J., Exarchos, I., & Liu, C. K. Fast and Feature-Complete 
Differentiable Physics for Articulated Rigid Bodies with Contact.



Challenge #2: Local flatness

SDF ground truth is often computed from a mesh.
But surface normal is constant on faces,
so contact normal (computed as positional derivative of SDF) has 0 gradient.

Many possible solutions!
We use one simple trick by analogy to ray-tracing: Phong tessellation.



Challenge #2: Local flatness

Figure from Phong Tessellation T Boubekeur, M Alexa ACM Transactions on Graphics 27 (5) 
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Easy to optimize over surface of a spherical cow (⚽),
but most aren’t so smooth (🐄).

Discontinuities in surface normals
↓

discontinuities in contact normals
↓

discontinuities in their gradients with respect to 
contact positions.
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Challenge #3: Non-smooth geometry

Luckily for us… SDFs are easy to smooth.
Instead of the sdf=0 level set,
consider the sdf=r for some r>0.
Adjust towards true surface (r=0)
as optimization progresses.

For robotic grasping:
Hand pre-shapes as if grasping larger version of same object.

Figure from inigo quilez interior SDFs (2020)

https://iquilezles.org/


Challenge #3: Non-smooth geometry

Does not help concave corners.

Future work: Is there a better transform?

Figure from inigo quilez interior SDFs (2020)

https://iquilezles.org/


Grasps from the ObMan dataset [*]

[*] Hasson, Y., Varol, G., Tzionas, D., Kalevatykh, I., Black, M. J., Laptev, I., & Schmid, C. (2019). Learning joint reconstruction of hands 
and manipulated objects. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11807-11816).
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Grasps from the ObMan dataset [*]

fingertip only grasps

less contact

[*] Hasson, Y., Varol, G., Tzionas, D., Kalevatykh, I., Black, M. J., Laptev, I., & Schmid, C. (2019). Learning joint reconstruction of hands 
and manipulated objects. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11807-11816).



Grasps from the ObMan dataset [*]

fingertip only grasps

less contact

less stable
Less contact = less friction.

[*] Hasson, Y., Varol, G., Tzionas, D., Kalevatykh, I., Black, M. J., Laptev, I., & Schmid, C. (2019). Learning joint reconstruction of hands 
and manipulated objects. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11807-11816).



Grasps from the ObMan dataset [*]

fingertip only grasps

less contact

less stable less plausible
Human grasping is contact-rich.Less contact = less friction.

[*] Hasson, Y., Varol, G., Tzionas, D., Kalevatykh, I., Black, M. J., Laptev, I., & Schmid, C. (2019). Learning joint reconstruction of hands 
and manipulated objects. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11807-11816).
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Grasp’D: Take away

Goal: Make SDF-based contact forces friendly to gradient-based optimization.
Why? Planning in high-dimensional contact-rich scenarios,
e.g., robotic grasping and manipulation with multi-finger hands.
Challenges & Proposed Solutions
1. Contact sparsity à Leaky gradient
2. Local flatness à Phong SDF
3. Non-smooth object geometry à SDF Dilation
An example application: Generating contact-rich human & robotic grasps.



Trajectories & 
Value Functions

Objects & Poses Differentiable 
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SimulationPerception Action

Robot Learning with Implicit Representations
Algorithmic Development (perception and control)

+ Improved Simulation for Contact-rich Manipulation

Work in progress

INR: object oriented state representations+ planning and control
Key challenge: pre-training and generalization
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