
CSC 498: Assignment 4

Matthew Zhang, Claas Voelcker, Liquan Wang, Prof. Animesh Garg

Released: Friday 11/18/2021 – Due: Friday 12/03/2021

Name, First Name:

Student number:

Total points: 50 points

To complete the exercise, you can use the tex template provided in the materials github.
Insert your answers into the solution space below each question. In case you are unfamiliar
with Latex, you may also submit handwritten solutions, but make sure they are clean and
legible.

Submit the exercise before 23:59 pm on the due date on Quercus. To submit, please bundle
your completed exercise sheet and your jupyter notebook into one zip file. Name the zip file
studentnumber_lastname_firstname.zip and upload it on quercus.

Each student will have 3 grace days throughout the semester for late assignment submissions.
Late submissions that exceed those grace days will lose 33% of their value for every late day
beyond the allotted grace days. Late submissions that exceed three days of delay after
the grace days have been used will unfortunately not be accepted. The official policy of
the Registrar’s Office at UTM regarding missed exams can be found here https://www.

utm.utoronto.ca/registrar/current-students/examinations. If you have a compelling
reason for missing the deadline, please contact the course staff as soon as possible to discuss
hand in. For this assignment, you can hand in up to one week late with no penalty.

For assignment questions, please use Piazza and the office hours, but refrain from posting
complete or partial solutions.

1



Name: 11.03.2021

I Theoretical Analysis of Model-Based Algorithms

We will proceed to show properties for model-based algorithms. In particular, we will be
discussing the Dyna algorithm [3], and comparing it the MBPO algorithm [1].

1. (3)A variant of the Dyna algorithm is given in the following algorithm box.

Require: Initial Q : S × A 7→ R, Model : S × A 7→ S × R (predicts next state and
reward), Initial State S
while Not Converged do
Sample trajectories τ1, τ2, . . . τn from the environment using policy π.
Fit Model(S,A) using trajectories τ1, τ2 . . . τn.
for i = 1, ... m do
Sample Strain, Atrain randomly from within τ1 . . . τn
Rtrain, S

′
train ∼ Model(Strain, Atrain)

Q(Strain, Atrain)← Q(Strain, Atrain)+α (Rtrain + γmaxAQ(S ′
train, A)−Q(Strain, Atrain)

end for
end while
return Q

Summarize in your words how Dyna trains (1) and one benefit of this approach compared
to model-free reinforcement learning (2).

Solution:

2. (5)Suppose that you train a policy π1 on an environment, and then train a modelM on data
generated with π1. What is an issue when you try to train a different policy π2 when we
use only M instead of the environment? (3) What does this imply about model-based
algorithms like Dyna? (2)

Solution:

3. (3)We want to generalize Dyna so that it uses the model to predict not just the next
state-reward S ′, R, but an entire trajectory St+1, Rt+1, St+2, Rt+2 . . ..

First, we need to consider the following problem. Suppose that there are two models D1

and D2 trained from two different policies π1, π2.

Then, suppose we wanted data from D2, but could only sample trajectories from D1.
We can sample long trajectories or short trajectories. Of the two, which one is likely to
be more similar to data sampled from D2? Briefly justify your answer.

Solution:

4. (4)One way of generalizing Dyna to longer trajectories is MBPO.

2 of 4



Name: 11.03.2021

A simplified version of theMBPO algorithm is shown below.

Require: Initial policy π, model M , Empty dataset D
while Not Converged do
Sample trajectories τ1, τ2, . . . τn from environment using policy π.
Train model M using trajectories τ1 . . . τn.
for i = 1, ... m do
Sample St randomly from states found in trajectories τ1, . . . τn.
Roll-out a trajectory σ = {St, At, Rt, St+1, At+1, Rt+1, . . . St+k, At+k, Rt+k} of length
k + 1 using the model M and the policy π, starting from St.
Train π using the trajectory σ.

end for
end while
return Final policy

Explain how the algorithm generalizes Dyna to trajectories (1). Using your answers from
Parts 2 and 3, explain why smaller k may be preferred compared to larger k when we
roll-out trajectories. (3)

Solution:

II Policy Gradients revisited

1. (5)Estimator variance In class, we discussed that the estimator for the policy gradient has
a high variance. In this exercise we want to quantify how large this variance is.

Give an unbiased estimator of the variance of the gradient estimator of vanilla policy
gradient with N samples.

Solution:

2. (7)Baseline variance We can add a baseline to reduce the variance of the estimator without
changing the mean. State the requirements for a baseline to not bias the estimator.
(2) From the previous derivation, derive the optimal baseline for the policy gradient
estimator of an actor-critic algorithm. (5)

Solution:

3. (3)What is the challenge of implementing this baseline in practice?

Solution:

3 of 4



Name: 11.03.2021

III Reinforcement Learning in Practice: MuZero

Figure 1: MuZero’s Performance on Multiple Game Benchmarks. From [2].

One of the most exciting developments in Model-based Reinforcement Learning in the last
few years was the extension of the seminal AlphGo algorithm to a model based architecture
called MuZero. MuZero achieves state of the art performance both on classic board games
such as chess and Go as well as the Arcade Learning Environment.

1. (20)Please summarize (in less than one page) the general approach adopted by MuZero, with
proper reference to scientific literature. In your summary, also state the advantages of
using MuZero over AlphaZero.

Solution:

References

[1] Michael Janner et al. “When to trust your model: Model-based policy optimization”.
In: arXiv preprint arXiv:1906.08253 (2019).

[2] Julian Schrittwieser et al. “Mastering atari, go, chess and shogi by planning with a
learned model”. In: Nature 588.7839 (2020), pp. 604–609.

[3] Richard S Sutton. “Dyna, an integrated architecture for learning, planning, and react-
ing”. In: ACM Sigart Bulletin 2.4 (1991), pp. 160–163.

4 of 4


