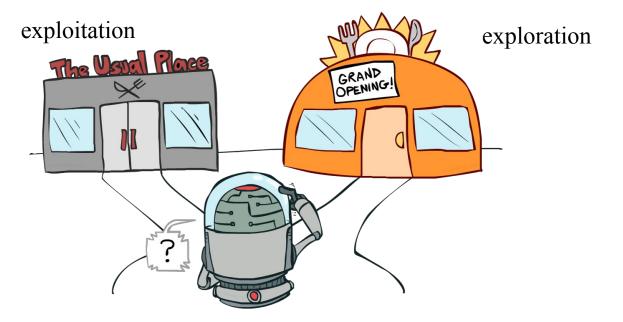
VIME: Variational Information Maximizing Exploration

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, Pieter Abbeel

Presenter: Daniel Flam-Shepherd

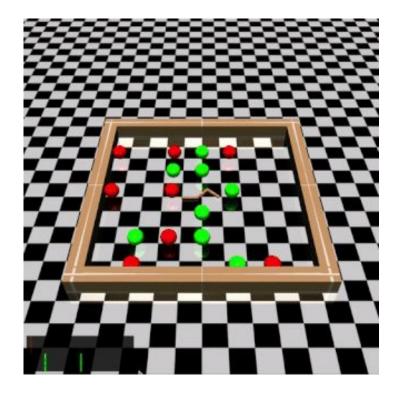
Exploration vs Exploitation



• An effective exploration strategy allows the agent to generate trajectories that are maximally informative about the environment

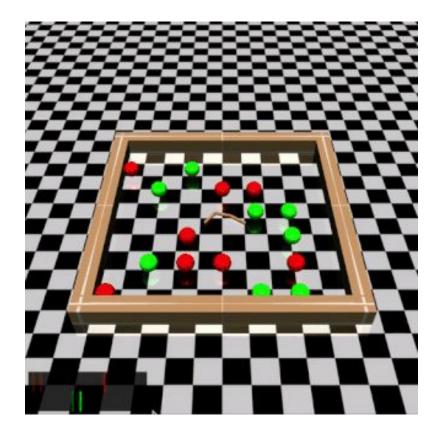
Why do we need Efficient Exploration

- Efficient exploration is an unsolved challenge in Reinforcement Learning
- In naive strategies, agents randomly stumble around until they enter rewarding situation
- Only works in toy tasks -- how do we scale to high dimensional action spaces



VIME is the solution

- A practical approach to exploration using uncertainty from a Bayesian Neural Network
- Improves a range of policy search methods and works in settings with sparse rewards



How is exploration typically handled?

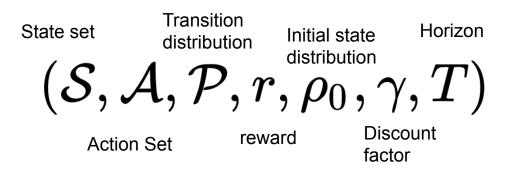
- For small tasks, we can turn to Bayesian RL and PAC-MDP methods
- The problem ? -- assumes discrete spaces.
- Otherwise -- use heuristic exploration strategies including :
 - acting randomly using epsilon-greedy or Boltzmann exploration, or utilizing Gaussian noise on the controls in policy gradient methods.
- The problem ? Can be highly inefficient.
- A few other methods have been proposed but nothing fully addresses exploration in continuous control.

Contributions

- This paper proposes a curiosity-driven exploration strategy -- agents are encouraged to take actions that result in states they deem surprising
- The authors propose a practical implementation, measuring information gain using variational inference. Specifically, the agent's current understanding of the environment dynamics is represented by a BNN.
- VIME scales naturally to continuous state and action spaces and achieves significantly better performance than naïve exploration strategies.

General Background -- Preliminaries

Assume a finite-horizon discounted Markov decision process



With expected discounted return

$$\mu(\pi_lpha) = \mathbb{E}_ au[\sum_{t=0}^T \gamma^t r(s_t, a_t)]$$

For Trajectory $au = (s_0, a_0, \ldots), \ s_0 \sim
ho_0(s_0), \ a_t \sim \pi_lpha(a_t | s_t), \ s_{t+1} \sim \mathcal{P}(s_{t+1} | s_t, a_t)$

2.2 curiosity driven exploration

- The agent engages in systematic exploration by seeking out state-action regions that are relatively unexplored.
- The agent models the environment dynamics via a model, parametrized by the random variable Θ with values $\theta \in \Theta$.

$$p(s_{t+1}|s_t,a_t; heta)$$

- Assuming a prior $p(\theta)$, it maintains a distribution over dynamic models through a distribution over θ
- The history of the agent up until time step t is denoted as

$$\xi_t = \{s_1,a_1,\ldots,s_t\}$$

• The agent should take actions that maximize the reduction in uncertainty about dynamics

2.2 curiosity driven exploration

How can we achieve this? -- Maximizing the sum of reductions in entropy

$$\sum_t [H(\Theta|\xi_t,a_t)-H(\Theta|S_{t+1},\xi_t,a_t)] = \sum_t I(S_{t+1};\Theta|\xi_t,a_t)$$

The agent is encouraged to take actions that lead to states that are maximally informative about the dynamics model

$$I(S_{t+1}; \Theta | \xi_t, a_t) = \mathbb{E}_{s_{t+1} \sim \mathcal{P}(\cdot | \xi_t, a_t)} [D_{ ext{KL}}[p(heta | \xi_t, a_t, s_{t+1}) \ || p(heta | \xi_t)]]$$

The trade-off between exploitation and exploration can now be realized explicitly as follows:

$$r'ig(s_t,a_T,s_{t+1}ig) = rig(s_t,a_tig) + \eta D_{ ext{KL}}ig[p(heta|\xi_t,a_t,s_{t+1}) \mid \mid p(heta|\xi_t)ig]$$

However, requires calculating the posterior which is generally intractable. $p(\theta|\xi_t, a_t, s_{t+1})$

Variational Bayes

We can derive the posterior distribution given a new state-action pair through Bayes' rule as

This integral tends to be intractable when using highly expressive parametrized models. Use variational inference, approximate the true posterior with an approximation and minimize $D_{\text{KL}}[q(\theta; \phi) || p(\theta|\mathcal{D})]$ which is equivalent to maximizing

$$L[q(heta;\phi),\mathcal{D}] = \mathbb{E}_{ heta \sim q(heta;\phi)}[p(\mathcal{D}| heta)] - D_{_{ ext{KL}}}[q(heta;\phi) \mid\mid p(heta)]$$

Use this to compute an approximation to information gain using this lower bound.

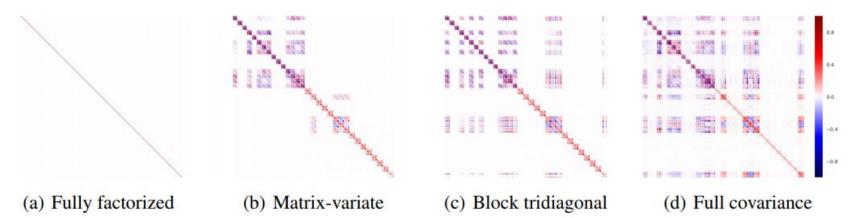
$$r'(s_t, a_T, s_{t+1}) = r(s_t, a_t) + \eta D_{KL}[q(heta; \phi_{t+1}) \ || q(heta; \phi_t)]$$

What do we use for $p(s_{t+1}|\xi_t, a_t; \theta)$?

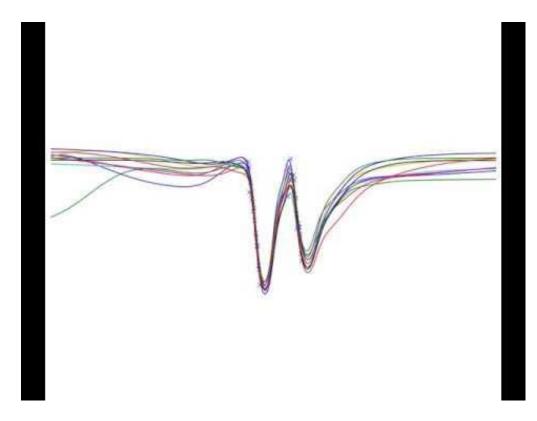
A Bayesian Neural Network! They use a fully factorized Gaussian distribution of the weights

$$q(heta;\phi) = \prod_{i=1}^{|\Theta|} \mathcal{N}(heta_t | \mu_i, \sigma_i^2)$$

Ensure the sd is parameterized to be positive and optimize the lower bound using the local reparameterization trick



Fitting some 1D toy data with a BNN!



Implementation : VIME

Algorithm 1: Variational Information Maximizing Exploration (VIME) for each epoch n do for each timestep t in each trajectory generated during n do Generate action $a_t \sim \pi_{\alpha}(s_t)$ and sample state $s_{t+1} \sim \mathcal{P}(\cdot|\xi_t, a_t)$, get $r(s_t, a_t)$. Add triplet (s_t, a_t, s_{t+1}) to FIFO replay pool \mathcal{R} . Compute $D_{\text{KL}}[q(\theta; \phi'_{n+1}) || q(\theta; \phi_{n+1})]$ by approximation $\nabla^{\top} H^{-1} \nabla$, following Eq. (16) for diagonal BNNs, or by optimizing Eq. (12) to obtain ϕ'_{n+1} for general BNNs. Divide $D_{\text{KL}}[q(\theta; \phi'_{n+1}) || q(\theta; \phi_{n+1})]$ by median of previous KL divergences. Construct $r'(s_t, a_t, s_{t+1}) \leftarrow r(s_t, a_t) + \eta D_{\text{KL}}[q(\theta; \phi'_{n+1}) || q(\theta; \phi_{n+1})]$, following Eq. (7). Minimize $D_{\text{KL}}[q(\theta; \phi_n) \| p(\theta)] - \mathbb{E}_{\theta \sim q(\cdot; \phi_n)} [\log p(\mathcal{D}|\theta)]$ following Eq. (6), with \mathcal{D} sampled randomly from \mathcal{R} , leading to updated posterior $q(\theta; \phi_{n+1})$. Use rewards $\{r'(s_t, a_t, s_{t+1})\}$ to update policy π_{α} using any standard RL method.

Implementation

The posterior distribution of the dynamics parameter can be computed through

$$\phi' = \underset{\phi}{\arg\min} \left[\underbrace{\mathcal{D}_{\mathrm{KL}}[q(\theta;\phi) \| q(\theta;\phi_{t-1})]}_{\ell_{\mathrm{KL}}(q(\theta;\phi))} - \mathbb{E}_{\theta \sim q(\cdot;\phi)} \left[\log p(s_t | \xi_t, a_t; \theta) \right]}_{\ell_{\mathrm{KL}}(q(\theta;\phi))} \right], \tag{12}$$

The KL divergence term has very simple form

$$D_{\rm KL}[q(\theta;\phi) \| q(\theta;\phi')] = \frac{1}{2} \sum_{i=1}^{|\Theta|} \left(\left(\frac{\sigma_i}{\sigma_i'} \right)^2 + 2\log\sigma_i' - 2\log\sigma_i + \frac{(\mu_i' - \mu_i)^2}{\sigma_i'^2} \right) - \frac{|\Theta|}{2}.$$
(14)

Can also optimize efficiently using a single higher order step $\Delta \phi = H^{-1}(\ell)
abla_{\phi} \ell(q(heta;\phi),s_t)$

$$D_{ ext{KL}}\left[q(heta;\phi+\lambda\Delta\phi)\mid\mid q(heta;\phi)
ight] \ pprox rac{1}{2}\lambda^2
abla_{\phi}\ell^ op H^{-1}(\ell_{ ext{KL}})
abla_{\phi}\ell^{-1}$$

Experiments

• The authors investigate

(i) whether VIME improves learning when the reward is well shaped

(ii) whether VIME can succeed in domains that have extremely sparse rewards,

(iii) how η , as used in in Eq. (3), trades off exploration and exploitation behavior.

• The following Tasks are part of the experimental setup :

1) CartPole (S \subseteq R⁴, A \subseteq R¹), 3) DoublePendulum (S \subseteq R⁶, A \subseteq R¹), 5) HalfCheetah (S \subseteq R²⁰, A \subseteq R⁶), 7) SwimmerGather (S \subseteq R³, A \subseteq R²) 2) CartPoleSwingup (S \subseteq R⁴, A \subseteq R¹), 4) MountainCar (S \subseteq R³, A \subseteq R¹), 6) Walker2D (S \subseteq R²⁰, A \subseteq R⁶), 7) SwimmerGather (S \subseteq R³³, A \subseteq R²)

Results : Sparse rewards

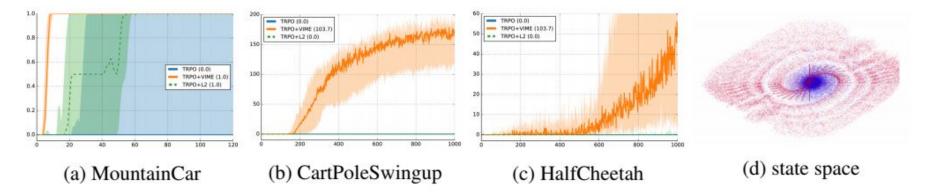


Figure 1: (a,b,c) TRPO+VIME versus TRPO on tasks with sparse rewards; (d) comparison of TRPO+VIME (red) and TRPO (blue) on MountainCar: visited states until convergence

Results : SwimmerGather

- They evaluate VIME on a difficult hierarchical task involving naturally sparse rewards
- VIME leads the agent to acquire coherent motion primitives without any reward guidance, achieving promising results on this challenging task.

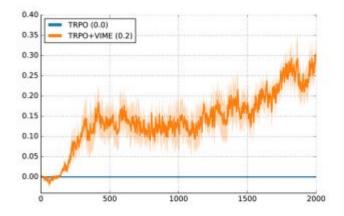
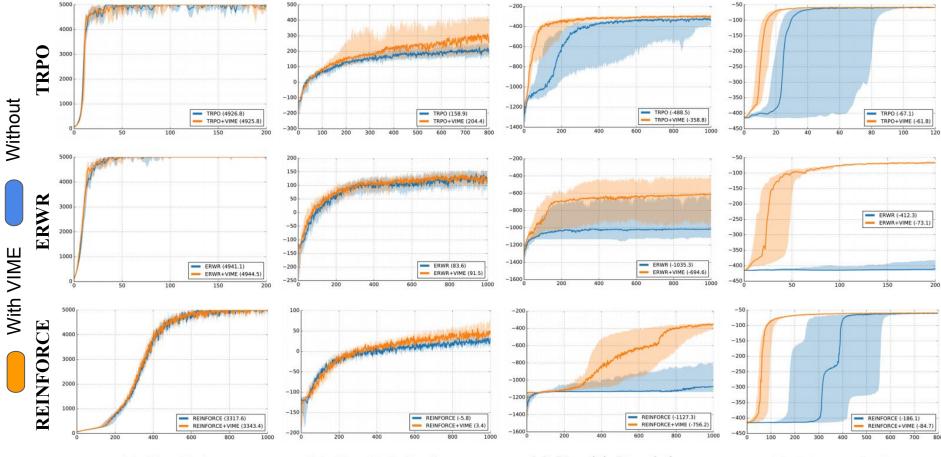


Figure 5: Performance of TRPO with and without VIME on the challenging hierarchical task SwimmerGather.

Results : environments with well shaped rewards



(a) CartPole

(b) CartPoleSwingup

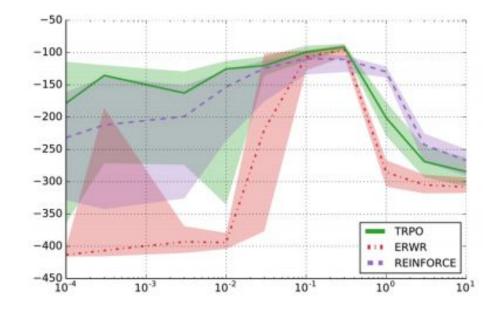
(c) DoublePendulum

(d) MountainCar

Results : Trading off exploration and exploitation

How does η trade off exploration and exploitation behavior?

- Setting η too high clearly results in prioritizing exploration over getting additional external reward.
- Too low of an η value reduces the method to the baseline algorithm



 $r'(s_t, a_T, s_{t+1}) = r(s_t, a_t) + \eta D_{ ext{KL}}[p(heta| \xi_t, a_t, s_{t+1}) \ || p(heta| \xi_t)]$

Discussion and Limitations

- Empirical results show that VIME performs significantly better than heuristic exploration methods across various continuous control tasks and algorithms.
- Mean Field Variational Inference underestimates uncertainty → however you can replace the diagonal Gaussian posterior with one including covariance like <u>Noisy Natural Gradient as Variational Inference</u>.

