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Many Intrinsic Objectives

Information gain e.g. Lindley 1956, Sun 2011, Houthooft 2017

Prediction error e.g. Schmidhuber 1991, Bellemare 2016, Pathak 2017

Empowerment e.g. Klyubin 2005, Tishby 2011, Gregor 2016

Skill discovery e.g. Eysenbach 2018, Sharma 2020, Co-Reyes 2018

Surprise minimization e.g. Schrödinger 1944, Friston 2013, Berseth 2020

Bayes-adaptive RL e.g. Gittins 1979, Duff 2002, Ross 2007
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Expected Infogain

Need to search for actions that will 
lead to high information gain without 
additional environment interaction

Learn a forward model of the 
environment to search for actions by 
planning or learning in imagination

Computing the expected information 
gain requires computing entropies of 
a model with uncertainty estimates

Retrospective Infogain

Collect episodes, train world model, 
record improvement, reward the 
controller by this improvement

Infogain depends on agent's 
knowledge that keeps changing, 
making it a non-stationary objective

The learned controller will lag behind 
and go to states that were previously 
novel but are not anymore

e.g. VIME, ICM, RND e.g. MAX, PETS-ET, LD

I(X; W | A=a)KL[p(W|X,A=a)    p(W|A=a)]||
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Retrospective Novelty

Episode 4 Back to random behavior

The agent builds a map 
of where it was already 
and avoids those states.
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Capture uncertainty as an ensemble of non-linear Gaussian predictors

Ensemble of Dynamics Models

I(X; W | A=a) = H(X | A=a) − H(X | W, A=a)
epistemic uncertainty aleatoric uncertaintytotal uncertainty

Information gain targets uncertain trajectories with low expected noise

Wide predictions mean high expected noise
Overlapping modes means less total uncertainty

Narrow predictions mean low expected noise
Distant modes means large total uncertainty
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I(X; W | A=a) = H(X | A=a) − H(X | W, A=a)
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Gaussian entropy has a closed form, so we can compute the aleatoric uncertainty.
GMM entropy does not, sample it or switch to Renyi entropy that has a closed form.





Compared Algorithms

Learning from imagined
trajectories (Expected)

MAX: JSD infogain
TVAX: State variance

Learning from experience
replay (Retrospective)

JDRX: JSD infogain
PERX: Prediction error



Exploration Chain Domain

+0.001 +1



State coverage of Ant Maze



model-free with 10x data

Zero-Shot Adaptation

no exploration needed exploration needed

Learn evaluation policy inside of learned 
model given a known reward function



Conclusions
Information gain is a principled task-agnostic objective

As a non-stationary objective, it should be optimized in expectation

This requires a dynamics model for planning to explore

Ensemble of Gaussian dynamics is a practical way to represent uncertainty


