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* Typically, performance of deep RL algorithms is evaluated via on-
policy interactions

* But comparing models in a real-world environment is costly
* Examines off-policy policy evaluation (OPE) for value-based methods



Motivation (cont.)

 Existing OPE metrics either rely on a model of the
environment or importance sampling (IS)

* OPE is most useful in off-policy RL setting, where we
expect to use real-world data as “validation set”
* Hard to use with IS

* For high-dimensional observations, models of the
environment can be difficult to fit
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Contributions

* Framed OPE as a positive-unlabeled (PU) classification problem and
developed two scores: OPC and SoftOPC

* Relies on neither IS nor model learning
e Correlate well with performance (on both simulated and real-world tasks)

* Can be used with complex data to evaluate expected performance of
off-policy RL methods

* Proposed metrics outperform a variety of baseline methods including
simulation-to-reality transfer scenario
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General Background (mDP)

* Focus on finite-horizon Markov decision processes (MDP):
(S; A; P; SO) T') )/)

* Assume a binary reward MDP, which satisfies:
ey =1
* Reward is 1 = 0 at all intermediate steps
* Final reward r = {0,1}

* Learn Q-functions Q(s, a) to evaluate policies
n(s) = argmax,Q(s,a)



General Background (Positive-Unlabeled Learning)

* Positive-unlabeled (PU) learning learns binary classification from
partially labeled data

* Sufficient to learn a binary classifier if the positive class prior p(y = 1) is
known

* Loss over negatives can be indirectly estimated from p(y = 1)




General Background (Positive-Unlabeled Learning)

* Want to evaluate I(g(x), y) over negative examples (x,y = 0)
p(x) =ply=Dply=1) +px|ly =0)p(y = 0)
- Using Ex[f(0)] = [, p(x)f (x)dx:

Ex[f ()] = P(y = 1)IEX|Y 1] +ply = O)[EX|Y=O[f(x)]
e Letting f(x) = I(g(x),0):
p(y = 0)Exy=ll(g(x),0)] = Exy[l(g(x),0)] —p(y = DExy=111(g(x),0)]



General Background (Definitions)

* In a binary reward MDP, (s;,a;) is feasible if an optimal =™ has non-
zero probability of achieving success after taking a; in s;

* (s;,a;) is catastrophic if even an optimal ™ has zero probability of
succeeding after a; is taken

* Therefore, return of a trajectory T is 1 only if all (s¢,a;) in T are
feasible
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OPE Method (Theorem)

* Theorem: R(m) = 1 —T{e ]

l€ =7 !_, €;|being average error over all (s;,a,), with

€t = ]Epg:n.|: 2 7T(a|5t)]

acA_(St)
* A_(s): set of catastrophicactions at state s

. p;fn: state distribution at time t, given that m was followed, and all its
previous actions were feasible, and s; is feasible

°|c(st, at)l probability that stochastic dynamics bring a feasible (s;,a;) toa
catastrophic s;,{, with c = max c(s,a)
s,a




OPE Method (Missing negative labels)

e Estimate €, probability that  takes a catastrophic action —i.e,,
(s,m(s)) is a false positive
€ =| p(y = 0)Exjy=oll(g(x), 0)]‘

e Recall
| POy = 0)Ex|y=0l1(g (), 0)]|= Ex v [{(g ()} 0] = p(y = DEx}y=1[1(g(x), 0)]
* \We obtain

€ = IIEJ(S,a) [ldQ(S» a)l 0)] — p(y = 1)IE(s,a),y=1 [l(Q(S; a), O)]




OPE Method (0ff-policy classification)

e Off-policy classification (OPC) score: negative loss when [ is 0-1 loss

1 1
[(Q(s,a),Y) = > + (E — Y) sign(Q(s,a) — b)

* SoftOPC: negative loss when [ is a soft loss function

[(Q(s,a),Y) = (1 —2Y)Q(s,a)
OPC(Q) = p(y — 1)[E(s,a),y=1[1Q(s,a)>b] — [E(s,a) [1Q(s,a)>b]
SOftOPC(Q) — p(y — 1)[E(s,a),y=1[Q (S: a)] _ II5:(s,a) [Q (S: a)]



OPE Method (Evaluating OPE metrics)

e Standard method: report MSE to the true episode return
* Our metrics do not estimate episode return directly

* Instead, train many Q-functions with different learning algorithms
* Evaluate true return of the equivalent argmax policy for each Q-function
 Compare correlation of the metric to true return

* Coefficient of determination of line of best fit R%, and Spearman rank
correlation ¢



Baseline Metrics

* Temporal-difference (TD) error D error- 4 ¥ 2
i S Discounted sum iy b
* Standard Q-learning training loss of advantages, -¢:” A~ Bosttive reward

* Discounted sum of advantages o
t 0 ;
Zt 14 ATC -,—:; ‘Classification
* Relates V™ (s) — V™(s) tothesumof &

advantages over data from 1, Negative reward

 Monte Carlo corrected (MCC) error

* Arrange discounted sum of advantages R
into a squared error e PRt
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Experimental Results (Simple Environments)

* Performance against stochastic dynamics

Stochastic Tree 1-Success Leaf Pong Sticky Actions
e=04 e = 0.6 € =0.8 Sticky 10%  Sticky 25%
R2 &- R2 &- R2 &- R2 &- R2 &-
TD Err 0.01 -0.07 | 0.00 -0.05 | 0.00 -0.05 | 0.05 -0.16 | 0.07 -0.15
S AtAT 0.00 001 | 001 -0.07 | 0.00 -0.02 | 004 -0.29 | 0.01 -0.22
MCC Err 0.07 -0.27 | 0.01 -0.06 | 0.01 -0.11 | 0.02 -0.32 | 0.00 -0.18
OPC (Ours) 0.13 038 | 001 008 | 003 0.19 | 048 0.73 | 0.33 0.66
SoftOPC (Ours) | 0.14 039 | 003 0.18 | 0.04 0.20 | 033 0.67 | 0.16 0.58




Experimental Results (vision-Based Robotic Grasping)

Tree (1 Succ) Pong Sim Train Sim Test Real-World

R? £ R? £ R*? £ R? £ R? £
TD Err 002 -0.15 [ 005 -0.18 |[[002 -037 [ 010 -051 | 0.17 048
S AtAT 0.00 0.00 | 0.09 -0.32 |_Q.74 0.81 1 0.74 0.18J 0.12 0.50
MCC Err 0.06 -026 | 0.04 -036 | 000 033 |006 -044 | 0.01 -0.15
OPC (Ours) 021 050 [ 050 072 [ 049 086 | 035 0.66 | 0.81 0.87
SoftOPC (Ours) | 0.19 051 | 036 0.75 | 055 0.76 | 048 0.77 I 091 0.94 |

e Performance on
simulated and real
versions of a vision-
based grasping task

(a) Simulated samples (b) Real samples



Discussion of results

* OPC and SoftOPC consistently 100k Grasps Model (Test Objects)
| SoftOPC

outperformed baselines 0120 - ' . L 09

* SoftOPC more reliably ranks
policies than baselines for real-

0.115 -

world performance 5 omo £
. 2 g
* SoftOPC performs slightly
better than OPC o
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Limitations

e Key limitation: restricted task domain
e Assumesan agent either succeeds or fails
* Difficult to model with complicated tasks with a long time-horizon

e Could not compare to many OPE baselines that use IS and model
learning techniques

* High correlation with real-world robotic grasping task, but
comparable with sum of discounted advantages in simulation



Contributions (Recap)

* Difficult and expensive to evaluate performance based on real-world
environments

* Many off-policy RL methods are based on value-based methods and do not require
any knowledge of the policy that generated the real-world training data

e These methods are hard to use with IS and model selection

* Treated evaluation as a classification problem and proposed OPC and
SoftOPC from negative losses to be used with off-policy Q-learning
algorithms

e Can predict relative performance of different policies in generalization scenarios

* Proposed OPE metrics outperform a variety of baseline methods including
simulation-to-reality transfer scenario



Take Home Questions

* What conditions must be met for the MDP to perform OPE via OPC?
 What is a natural choice for the decision function?

e How are the classification scores determined? Which losses are used?

e Which two correlations are used to evaluate the metrics?




