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Motivation

• Typically, performance of deep RL algorithms is evaluated via on-
policy interactions

• But comparing models in a real-world environment is costly

• Examines off-policy policy evaluation (OPE) for value-based methods



Motivation (cont.)

• Existing OPE metrics either rely on a model of the
environment or importance sampling (IS)

• OPE is most useful in off-policy RL setting, where we
expect to use real-world data as “validation set”
• Hard to use with IS

• For high-dimensional observations, models of the
environment can be difficult to fit
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Contributions

• Framed OPE as a positive-unlabeled (PU) classification problem and
developed two scores: OPC and SoftOPC
• Relies on neither IS nor model learning

• Correlate well with performance (on both simulated and real-world tasks)

• Can be used with complex data to evaluate expected performance of
off-policy RL methods

• Proposed metrics outperform a variety of baseline methods including 
simulation-to-reality transfer scenario
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General Background (MDP) 

• Focus on finite-horizon Markov decision processes (MDP):

• Assume a binary reward MDP, which satisfies:
• 𝛾 = 1

• Reward is 𝑟𝑡 = 0 at all intermediate steps

• Final reward 𝑟𝑇 = 0,1

• Learn Q-functions 𝑄(𝐬, 𝐚) to evaluate policies
𝜋 𝐬 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐚𝑄(𝐬, 𝐚)



General Background (Positive-Unlabeled Learning)

• Positive-unlabeled (PU) learning learns binary classification from 
partially labeled data
• Sufficient to learn a binary classifier if the positive class prior 𝑝(𝑦 = 1) is 

known

• Loss over negatives can be indirectly estimated from 𝑝(𝑦 = 1)



General Background (Positive-Unlabeled Learning)

• Want to evaluate 𝑙 𝑔 𝑥 , 𝑦 over negative examples (𝑥, 𝑦 = 0)

𝑝 𝑥 = 𝑝 𝑥 𝑦 = 1 𝑝 𝑦 = 1 + 𝑝 𝑥 𝑦 = 0 𝑝(𝑦 = 0)

• Using 𝔼𝑋 𝑓(𝑥) = ׬
𝑥
𝑝 𝑥 𝑓 𝑥 𝑑𝑥:

𝔼𝑋 𝑓(𝑥) = 𝑝 𝑦 = 1 𝔼𝑋|𝑌=1 𝑓(𝑥) + 𝑝 𝑦 = 0 𝔼𝑋|𝑌=0 𝑓(𝑥)

• Letting 𝑓 𝑥 = 𝑙(𝑔 𝑥 , 0):



General Background (Definitions)

• In a binary reward MDP, (𝐬𝑡 , 𝐚𝑡) is feasible if an optimal 𝜋∗ has non-
zero probability of achieving success after taking 𝐚𝑡 in 𝐬𝑡

• (𝐬𝑡, 𝐚𝑡) is catastrophic if even an optimal 𝜋∗ has zero probability of 
succeeding after 𝐚𝑡 is taken

• Therefore, return of a trajectory 𝜏 is 1 only if all (𝐬𝑡 , 𝐚𝑡) in 𝜏 are 
feasible
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OPE Method (Theorem)

• Theorem: 𝑅 𝜋 ≥ 1 − 𝑇(𝜖 + 𝑐)

• 𝜖 =
1

𝑇
σ𝑖=1
𝑇 𝜖𝑡 being average error over all 𝐬𝑡 , 𝐚𝑡 , with 

𝜖𝑡 = 𝔼𝜌𝑡,𝜋+ ෍

𝐚∈𝒜_(𝐬𝑡)

𝜋 𝐚 𝐬𝑡

• 𝒜_(𝐬): set of catastrophic actions at state 𝐬

• 𝜌𝑡,𝜋
+ : state distribution at time 𝑡, given that 𝜋 was followed, and all its 

previous actions were feasible, and 𝐬𝑡 is feasible

• 𝑐 𝐬𝑡, 𝐚𝑡 : probability that stochastic dynamics bring a feasible (𝐬𝑡 , 𝐚𝑡) to a 
catastrophic 𝐬𝑡+1, with 𝑐 = max

𝐬,𝐚
𝑐(𝐬, 𝐚)



OPE Method (Missing negative labels)

• Estimate 𝜖, probability that 𝜋 takes a catastrophic action – i.e., 
(𝐬, 𝜋 𝐬 ) is a false positive

𝜖 = 𝑝 𝑦 = 0 𝔼𝑋|𝑌=0 𝑙 𝑔 𝑥 , 0

• Recall 
𝑝 𝑦 = 0 𝔼𝑋|𝑌=0 𝑙 𝑔 𝑥 , 0 = 𝔼𝑋,𝑌 𝑙 𝑔 𝑥 , 0 − 𝑝(𝑦 = 1)𝔼𝑋|𝑌=1 𝑙 𝑔 𝑥 , 0

• We obtain

𝜖 = 𝔼 𝐬,𝐚 𝑙 𝑄 𝐬, 𝐚 , 0 − 𝑝(𝑦 = 1)𝔼 𝐬,𝐚 ,𝑦=1 𝑙(𝑄 𝐬, 𝐚 , 0)



OPE Method (Off-policy classification)

• Off-policy classification (OPC) score: negative loss when 𝑙 is 0-1 loss

• SoftOPC: negative loss when 𝑙 is a soft loss function 
𝑙 𝑄 𝐬, 𝐚 , 𝑌 = 1 − 2𝑌 𝑄 𝐬, 𝐚



OPE Method (Evaluating OPE metrics)

• Standard method: report MSE to the true episode return
• Our metrics do not estimate episode return directly

• Instead, train many Q-functions with different learning algorithms
• Evaluate true return of the equivalent argmax policy for each Q-function

• Compare correlation of the metric to true return

• Coefficient of determination of line of best fit 𝑅2, and Spearman rank 
correlation 𝜉



Baseline Metrics

• Temporal-difference (TD) error
• Standard Q-learning training loss

• Discounted sum of advantages 
σ𝑡 𝛾

𝑡𝐴𝜋

• Relates 𝑉𝜋𝑏 𝐬 − 𝑉𝜋(𝐬) to the sum of 
advantages over data from 𝜋𝑏

• Monte Carlo corrected (MCC) error
• Arrange discounted sum of advantages 

into a squared error
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Experimental Results (Simple Environments)

• Performance against stochastic dynamics



Experimental Results (Vision-Based Robotic Grasping)

• Performance on 
simulated and real 
versions of a vision-
based grasping task



Discussion of results

• OPC and SoftOPC consistently 
outperformed baselines

• SoftOPC more reliably ranks 
policies than baselines for real-
world performance

• SoftOPC performs slightly 
better than OPC
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Limitations

• Key limitation: restricted task domain
• Assumes an agent either succeeds or fails

• Difficult to model with complicated tasks with a long time-horizon

• Could not compare to many OPE baselines that use IS and model 
learning techniques

• High correlation with real-world robotic grasping task, but
comparable with sum of discounted advantages in simulation



Contributions (Recap)

• Difficult and expensive to evaluate performance based on real-world 
environments
• Many off-policy RL methods are based on value-based methods and do not require 

any knowledge of the policy that generated the real-world training data

• These methods are hard to use with IS and model selection 

• Treated evaluation as a classification problem and proposed OPC and 
SoftOPC from negative losses to be used with off-policy Q-learning 
algorithms
• Can predict relative performance of different policies in generalization scenarios

• Proposed OPE metrics outperform a variety of baseline methods including 
simulation-to-reality transfer scenario



Take Home Questions

• What conditions must be met for the MDP to perform OPE via OPC?

• What is a natural choice for the decision function?

• How are the classification scores determined? Which losses are used?

• Which two correlations are used to evaluate the metrics?


