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Problem Statement

e Problem Statement



Problem Statement

Learn the cost(reward) function from Demonstration — Inverse Optimal Control




Contribution

e Contribution



Contribution

e Learn the cost function (Inverse Optimal Control) with the KKT condition for

the constrained motion optimization

e A formulation of square hand-crafted features as cost function and a
formulation of kernel method

e These two methods can be reduced as a constrained quadratic optimization
problem and easily solved with the existing quadratic solver
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e Background



Background - Optimization

Objective function z* = argmin, f(z,y,w)
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Background - Optimization - Lagrangian Multiplier

Objective function 1 — arqg min, f($7 Y, w)
Constraint st. h(z,y) =0
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Background - Optimization

Objective function z* = argmin, f(z,y,w)

Constraint st. h(z,y) =0

g(z,y) <0



Karush-Kuhn-Tucker conditions

Given general problem

min f(z)

x€ER™
subject to h;(x) <0, i=1,...m
ﬁj(x)=0, j=1,...7"

The Karush-Kuhn-Tucker conditions or KKT conditions are:

e 0€0f(z)+ Z u;Ohi(x) + Z v;04;(x) (stationarity)
i=1 j=1

o u;-hi(x) =0 for all 4 (complementary slackness)

e hi(z) <0, £j(z) =0 for all 4,j (primal feasibility)

e u; >0 for all ¢ (dual feasibility)

Ref: Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725



Karush-Kuhn-Tucker conditions

Given general problem

min f(z)

z€R™
subject to h;(x) <0, i=1,...m
Ej(:c)=0, j=1,...’l”

The Karush-Kuhn-Tucker conditions or KKT conditions are:

e 0€0f(z)+ Z u;Ohi(x) + Z v;04;(x) (stationarity)
1=1 j=1

o u;-hi(x) =0 for all 4 (complementary slackness)

* hi(x) <0, ¢j(z) =0 forall 4, j (primal feasibility)

e u; >0 for all ¢ (dual feasibility)

Ref: Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725



Background - Optimization - KKT

Objective function r* = arqg miIla; f(CE, Y, w)
Constraint st. h(z,y)=0 g(z,y) <0

Lagrangian function L(CB, A, N) — f(:l}) + )\h(a;) + Mg(fﬂ)
First KKT condition ~ VL(x, A) = V f(x) + AVh(z) + uVg(z) =0



Background --Task Settings - Features

Cost function: f(a:, Y, w) — Zf w;r qﬁ? (wt, y)

¢: features. Differences between the forward kinematics mapping and object
position (given by y)

e Transition Features: Smoothness of the motion (sum of squared
acceleration or torques)

e Position Features: Represent a body position relative to another body

e Orientation Features: Represent orientation of a body relative to other body



Background -- Task Settings - weighting vector w

Cost function: f(x’ v, w) — Zf w;r gb? (CEt, y)

wy. Weighting vector at time t. Given in optimal control. Required to solve in the
inverse optimal control scenario



Background -- Task Settings - constraints

Cost function: f(.’l:, Y, w) — ZZ w;r qﬁ% (wt, y)

Constraint:

gt (w, y) < 0: The smallest distance difference between the forward kinematics
mapping and object position has to be larger than a threshold. [Body orientation or
relative positions between robot and an object]

hy (CB, y) = 0: The distance between hand and object that should be exact zero



Optimal Control and Inverse Optimal Control

Del(l(lignstrations
{5’31:Tf y(d) }cli):l

Inverse Optimal Control
min /(w, \)
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s.t. w >0
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Inverse KKT overview

f(waya w) — wT¢2
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Inverse Optimal Control
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Inverse Optimal Control -- features method

Cost function f(a;, Y, w) —w! ¢2
Constraint st. h(z,y) =0 g(z,y) <0

Goal: Given demonstration x* and y —» Find the optimal w



Inverse Optimal Control -- features method

Cost function f(g;, Y, w) —w' ¢2
Constraint st. h(z,y) =0 g(z,y) <0
Lagrangian function L(a’;, )\,fw) — f(a;) A" [h(:l:),g(:c)]

First KKT condition  VL(z, X\, w) = Vf(z) + AT V[h(z), g(z)]
=0



Inverse Optimal Control -- features method

If we assume the demonstration x* is the optimal demonstration

VL(z*, A, w) = Vf(z*) + X' V[h(z"), g(z*)] = 0
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Inverse Optimal Control -- features method

If we assume the demonstration x* is the optimal demonstration

VL(z*, A, w) = Vf(z*) + X' V[h(z"), g(z*)] = 0

Just find the w and A make the equation hold! Very hard to do it!



Inverse Optimal Control -- features method

Treat it as a loss function and find the optimal w through the optimization method

VL(z*, \,w) = Vf(z*) + X' V[h(z*), g(z*)]

Loss function: |, D: number of demonstration

L= Zfi)zl 1

1 = ||[VL(z", A, w)||
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Inverse Optimal Control -- features method

Goal: Find the optimal w.
Problem to solve w? _ D
l= Zd:l !

1 = ||VL(z", A w)||”

Two unknown variables here! We don’t know Al
Represent A with w to be a single variable optimization



Inverse Optimal Control -- features method

Goal: Find the optimal w.

L= chi):l ¢

1 = ||VL(z", A w)||”

(D) :4wTdiag(<I>)J<I—ch(jcch ) —1jc)JTdiag(<I>)w

N >
-~

Ald)

14 (w): is a function of w and all the other terms are given



Inverse Optimal Control -- features method

Goal: Find the optimal w.

L= chi):l ¢

1 = ||VL(z", A w)||”

(D) :4wTdiag(<I>)J<I—ch(jcch ) —1jc)JTdiag(<I>)w

N >
-~

Ald)

14 (w): is a function of w and all the other terms are given

min,, w' Adw s.t. w > 0 (Quadratic optimization)



Inverse Optimal Control -- features method

Goal: Find the optimal w.
min, w' A%w st w>0



Inverse Optimal Control -- features method

Goal: Find the optimal w.
min, w' A%w st w>0

Problem?



Inverse Optimal Control -- features method

Goal: Find the optimal w.
min, w' A%w st w>0

Problem?
w can be all zeros!



Inverse Optimal Control -- features method

Goal: Find the optimal w.
Add constraint forw! min, w' A%w st w>0 Y w; =1



Inverse Optimal Control -- features method

Goal: Find the optimal w.
Add constraint forw! min, w' A%w st w>0 Y w; =1

Linear Solution
w = Ap

where A is given (one parameter to multiple task)



Inverse Optimal Control -- features method

Goal: Find the optimal w.
Add constraint forw! min, w' A%w st w>0 Y w; =1

Nonlinear Solution
w = A(p)

w is a gaussian distribution function of t. Mean and variance in Gaussian is described by P



Inverse Optimal Control -- features method

Goal: Find the optimal w.
f(z,y,w) = w'¢*

L= chi):l ¢
14 = ||VL(z*, A\, w)||’

14 (w): is a function of w and all the other terms are given

min,, w  A%w st w>0 Yo, wi =1



Method - Kernel Method

Kernel Method: Instead of using hand crafted features, using the features in the
kernel space

Cost function f: f(z,y,w) = w' ¢?



Method - Kernel Method

Kernel Method: Instead of using hand crafted features, using the features in the
kernel space

Cost function f: f(wM P>
a: weighting vector

f(wa Y, Oé) — aTk(wth)
k: RBF kernel function Y—1: hyperparameters

k(zl,z2) = exp(—(z1 — 22) ' 71 (21 — z3))



Method - Kernel Method
Goal: Solve a f(z,y,a) =o' k(z,xs)

Loss function will be optimized [ = ZdDzl 1

14 = ||[VL(z*, A\, @)



Method - Kernel Method
Goal: Solve a f(z,y,a) =o' k(z,xs)

Loss function will be optimized [ = Z?:l 1
It = [|VL(z*, \, )|

Represent loss function with a

1.7

(D(a) = VT (I—J(T(J(.J(T)”J() V.
—a' QPq
Solve a with quadratic solver

minga' Qa st a>0 Y, =1
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Experiments -- toy 2d example
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Task: Start from point and and end at blue point. 6 time steps in
total and time step 3 and 4 should be in contact with the stick.
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Experiments -- toy 2d example

Testing

Set \\ .o \ \
Task: Start from point and and end at blue point. 6 time steps in

total and time step 3 and 4 should be in contact with the stick.



Results -- toy 2d example

method error (train set) error (test set) constraint violation (train set) constraint violation (test set)
IKKT (feature) 0.027475 0.46944 1.1102e-15 1.6653e-15

IKKT (kernel) 0.94625 66.065 4.4409e-16 8.2469e-16

CIOC 0.014732 0.64592 0.00058039 0.001128

Error: sum of absolute difference between the resulting motion with the
learned weights w and the reference motion.

Constraint violation: Distance to the stick.

Ref: Levine and Koltun, Continuous Inverse Optimal Control with Locally Optimal Examples, ICML 2011
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Error: sum of absolute difference between the resulting motion with the
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Results -- toy 2d example

method error (train set) error (test set) |constraint violation (train set) constraint violation (test set)
IKKT (feature) 0.027475 0.46944 1.1102e-15 1.6653e-15

IKKT (kernel) 0.94625 66.065 4.4409e-16 8.2469e-16

CIOC 0.014732 0.64592 0.00058039 0.001128

Constraint violation: Distance to the stick.

Constraint Violation Error: IKKT << CIOC

Ref: Levine and Koltun, Continuous Inverse Optimal Control with Locally Optimal Examples, ICML 2011



Experiments -- synthetic dataset

Synthetic dataset: longer time steps (50 time steps)

Groundtruth weighting vector w is known (But still requires to learn it)



Experiments

Synthetic dataset: longer time steps (50 time steps)
Three methods

e Direct param: Each time step learn a parameter
e RBF param: 30 Gaussian with standard deviation 0.8 and uniformly

distributed in 50 time steps.
e Nonlinear Gaussian: A single gaussian. The mean and the standard deviation

are parametrized.



Results

Ground truth
® Direct param
——Gauss param
—RBF param

15 20 25 30 35 40 45 50
time steps

Direct param outperform the other methods



Experiments

Inverse KKT: Learning Cost Functions of
Manipulation Tasks from Demonstrations

Peter Englert, Marc Toussaint
U Stuttgart

Part 1: Opening a door with PR2 Part 2: Sliding a box in simulation

https://www.youtube.com/watch?v=pO6XNiyJaNw



https://www.youtube.com/watch?v=pO6XNiyJqNw
http://www.youtube.com/watch?v=pO6XNiyJqNw

Results - Sliding Box on a table

3w transition
w— N0SBOX
5 2 —vechx
S | ==posFinger1
L | w==posFinger2
1} wem posHand
we yecHand
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Takeaway

e Learn the cost function with the inverse KKT method for constrained motion
optimization

e The author proposed two methods -- hand crafted features based method and
kernel based method

e Both of the methods can be solved by existing quadratic solver



Discussion

e Handcrafted features works well. What if the task is too difficult and the
handcrafted features are not good enough?
o IS f(x.r,y,w) =w' ®*(x.7,y) agood enough cost function?



Questions

e The relation between optimal control and inverse optimal control

e The relation between loss function in inverse optimal control and the cost
function in optimal control

e What two main methods do they use

e \What's the KKT first condition



