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Overview

e Problem statement: model bias in MB-RL
Contributions of the paper

e Background
o Model bias
o Meta Learning

e Proposed solution: MB-MPO
e Experiments & results
e Discussion: limitations and open issues



Motivation

Model-based RL is sample-efficient assuming a good model of the environment

e A dynamics model can (a) provide training trajectories for policy learning

(b) provide gradient information in control

But “accurate dynamics models can often be far more complex than good policies”

e E.g. Pouring water into cup.
Policy (state — action mapping) description is simpler than physics required

([
for next-state prediction (state, action — next state mapping)



Motivation 2
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Any errors in the dynamics model propagate to policy
learning (model bias)

Model-based RL must account for uncertainty of model fit

[https://bair.berkeley.edu/blog/2019/12/12/mbpo/]
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https://bair.berkeley.edu/blog/2019/12/12/mbpo/

Contributions

e C(Cast (single-environment) MB-RL as meta learning
o Each model (“learner”) in the ensemble adapts to its “task”, and policy (“meta learner”) seeks
best average performance across ensemble after adaptation
e Propose MB-MPO algorithm that uses MAML-style meta learner
o Meta learner chooses initial parameters that yield best single-gradient-step adaptation
o Performance gains over model-based ensembling w/o meta learning (ME-TRPO)
o Sample efficiency gains over model-free methods
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RL is about learning a policy that does well in an environment e

[Sutton & Barto 2018]

Model-based RL uses models of environment dynamics towards this goal
Models fit via supervised learning using relatively few off-policy trajectories
Models can be leveraged by policy learners in a variety of ways

e Random shooting: choose best next action over random trajectory rollouts
e Propagate gradients of policy parameters through trajectory rollouts

e Sample (“imagine”) many trajectories to train policy via model-free method
o Focus of this paper; policy updates using 100k trajectories while models fit using 4k

Note: see Wang et al 2019 Benchmarking MB-RL for
helpful taxonomy of model-based methods




Background: Mitigating model bias

“Policy optimization is prone to overfit to deficiencies of the model”

Possible approaches to mitigating model bias:
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[Sutton & Barto 2018]

e Probabilistic model to explicitly capture environment variance (PILCO, PETS)

o Limitations: density modeling is difficult.

m GP gives good non-parametric uncertainty estimates but doesn’t scale.

m Neural nets scale but make simplifying distributional assumptions

e Learn policy that does well on average over ensemble of models (ME-TRPO)

o Limitations: each ensemble member is still free to overfit

o In principle, environments with multimodal transitions necessitate large ensembles

Note: see Wang et al 2019 Benchmarking MB-RL for
helpful taxonomy of model-based methods




Background: Meta learning

meta-training

tralning data test set

Learning seeks to generalize to new examples

Meta learning seeks to generalize to new

meta-testing

experiences/tasks

Model-agnostic meta learner (MAML) is a popular
approach for learning good initial parameters
given a sequence of tasks

Example meta-learning set-up for few-shot image classification, visual adapted from Ravi &

Larochelle ‘17.

[https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/]
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Diagram of the MAML approach.

https://bair.berkeley.edu/bloa/2017/07/18/learning-to-learn/]
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Proposed method: MB-MPO

Supervised learning of model ensemble from shared off-policy trajectory buffer
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Generate set of imagined trajectories using the model ensemble

For each model, compute average returns under current policy, and grads w.r.t. parameters
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For each model, take an adaptation step on own trajectories

St+1 = fqbk(staat)

[Clavera et al 2018]

Meta-update initial policy parameters to improve average adapted returns
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Proposed method: MB-MPO
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Algorithm 1 MB-MPO
Reqmre Inner and outer step size «, 3
. Initialize the policy 7g, the models f¢>1 f¢2, f b and D ()
G 2 o o : : .
3:  Sample trajectories from the real environment with the adapted policies Tyl s Tl - Add
them to D.
FQd 4 Train all models using D.
5:  for all models fdn do
6: Sample imaginary trajectories 7 from f using g
7 Compute adapted parameters 8], = 6 + Vg Ji(0) using trajectories T
Fq 8 Sample imaginary trajectories 7, from f¢ . using the adapted policy 7/
9:  end for : . . : ,
M. 10: U.pdate (7] —5 0—8 %> Vng(GL) using the trajectories 7,
11: until the policy performs well in the real environment
12: return Optimal pre-update parameters 8*
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Implementation details

Evaluated on continuous control tasks with deterministic dynamics

e Variance across model ensembles due to data shuffling and env. init.
e Shuffling dominates randomness since all models share experience.

Outer loop policy updated with TRPO, while inner loop uses vanilla policy gradient
Second-order gradients are numerically approximated, rather than using costly but

exact automatic differentiation. i o of
GEal(@.0)] = Ex | (55 ogpa(al0)) £(2,0)+ 5

do

[REINFORCE under chain rule, Weber 2019]

Some standard tricks (reward baselines, weight norm) used to stabilize training



Experiments & Results

Six continuous control benchmark tasks from Mujoco with deterministic dynamics
Meta-learned init. params. used to report rewards (adaptation for inner loop only)
Key experiments:

Show the inner loop adaptation meaningfully changes the policy distribution
Show sample efficiency win over model-free algos

Show performance win over model-based algos that account for model bias
Show robustness to observation noise in experience buffer used to fit models



Experiments & Results

Simple synthetic setting
e Agent must move to goal in 2-D space

“Plasticity” computed as KL-divergence of pre-
and post-update policy within the inner loop

e This quantity depends on the agents
current state

e Agent shows greater plasticity when far
away from goal; these states are
underrepresented in the experience buffer

Model ensemble standard dev.
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Figure 3: Upper: Standard
deviation of model ensem-
ble predictions Lower: KL-
divergence between pre- and
post-update policy (after 50
MB-MPO iterations in the 2-
D Point env). The x and y
axis denote the state-space di-
mensions of the 2-D Point en-
vironment

[Clavera et al 2018]



Experiments & Results

MB-MPQO achieves sample efficiency wins over model-free methods

c Ant c HalfCheetah c Hopper

= = p |

+ 1000 < 500 =

- £ //—‘ £ 500

& s00 B 7 B

o 7———:-_—:"'/_// o 0 ] 27

> > > 0

= 10¢ 10° 10 107 104 10° 10° 107< 10¢ 10° 10° 107

Time steps Time steps Time steps

P § PR2 . Swimmer €66 Walker2D

2 fi e —— S //Pf 2

o @ o

g -50 7__/ 2 50 // v 500 /ﬁ

(0] © © .

9 -100 g o 9 0 _/

E 10° 10° 10° 107 10¢ 10° 106 16* 10° 10° 10° 107

Time steps Time steps Time steps
— ours —— acktr — trpo —— ppo ddpg - max

Figure 1: Learning curves of MB-MPO (“ours™) and four state-of-the-art model-free methods in six
different Mujoco environments with a horizon of 200. MB-MPO is able to match the asymptotic
performance of model-free methods with two orders of magnitude less samples.

[Clavera et al 2018]




Experiments & Results

MB-MPO outperforms model-biased-aware model-based methods

Baselines: standard ensembles (ME-TRPO) and model-free fine tuning (MB-MPC)
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Figure 2: Learning curves of MB-MPO (“ours”) and two MB methods in 6 different Mujoco en-
vironments with a horizon of 200. MB-MPO achieves better asymptotic performance and faster

convergence rate than previous MB methods. [Clavera et al 2018]




Experiments & Results

Measurement noise added to trajectories collected from environment
Therefore each ensemble is potentially unreliable

MB-MPO is more robust than standard ensembling (ME-TRPO)
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Figure 4: Comparison of MB-MPO (“ours”) and ME-TRPO using 5 biased and noisy dynamic
models in the half-cheetah environment with a horizon of 100 time steps. A bias term b is sampled
uniformly from a denoted interval in every iteration. During the iterations we add to the predicted
observation a Gaussian noise A (b, 0.1).

[Clavera et al 2018]



More results

Acrobot

MB-MPO wins: 8
ME-TRPO wins: 3
Statistical tie: 7

Total: 18

[Wang et al 2019]

P InvertedP | | CartPole |  Mountain Car | Reacher

ME-TRPO |  177.3 + 1.9« -1262+866 | -68.1+67 | 160.1+£69.1 [ -425+266 | -13.4+02
MB-MPO | 171.2+269 0000« | 878+129 | 1993+23 | -306+348 | -5.6+08

| HalfCheetah Swimmer-v0 | Swimmer Ant | Ant-ET | Walker2D
ME-TRPO | 2283.7 + 900.4 30.1+9.7 | 3363+158« [ 2822+180 | 42.6 +21.1 | -1609.3 -+ 657.5
MB-MPO | 3639.0 = 1185.8 | 85.0 - 989« | 2685+1254 | 705.8+1472 |  303£223 | -15459 £2165

| Walker2D-ET Hopper | Hopper-ET | Slimk id | SlimH id-ET | H id-ET
ME-TRPO | 95+46 12725+£5009 |  49+40 [ -1549+5343 | 76.1 + 8.8 [ 729+89
MB-MPO |  -103+14 3332411897 | 83436 | 6744+9822 | 1155+319 | 73.1+23.1



Limitations & Open Issues

Meta learning is about generalizing to new experiences

e Despite empirical strength of MB-MPO, is meta learning the right tool to tackle

model bias?
o Ifyes, is MAML the right meta learning approach to tackle model bias?

e Does this approach work for environments with stochastic dynamics? What
about discrete states?



Summary

Model bias is a key technical issue blocking the potential sample efficiency wins of
model-based RL over model-free.

Explicitly modeling environment uncertainty (e.g., PILCO) does not scale.

In general, ensembling is an easy way to capture environment variance that works
decently in practice.

Ensembles can be improved by the proposed MB-MPO, a MAML-style meta
learning algorithm that seeks optimal initial policy parameters.

Model bias remains an open problem with many possible approaches!



