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Questions for Professor Animesh

e \What is the point of MBRL?

o Sample cost for MBRL is regarding learning the model or using the model to learn a policy, or
both. (assuming sample from model is free)
e If sample efficiency is regarding after having a model

o VAML can’t be reused. Then point is not so much to reuse it for different tasks
o Is the point that we can get more than single sample estimates during q learning?



Model Based Reinforcement Learning

Model Free RL: Learn a value function or policy by directly interacting with
environment

Model based RL: Use interactions with environment to learn a model of the
environment

Advantages
e Learning model is more sample efficient than policy (sometimes)

e Model can be reused to learn other policies

Potential difficulty: A little bit wrong in the model can be a lot wrong in the policy
(which is what matters ultimately)



Motivation

Why prior methods might be failing

e Conventional MBRL learns a model by minimizing probabilistic loss,
o Then uses the model for planning
o E.g. Garbage picking robot in art museum. Overkill maybe?

e Solving the unsupervised problem (model learning) in a vacuum ignores the
decision problems we eventually need to solve

Let’s do decision aware model learning (DAML)!



Contributions

e A decision-aware method for model based RL
o Take into account how value based planner would use a model

e An easier optimization problem than prior work
o Reuses some computation, tradeoff with robustness

e Theoretical analysis
o What are the effects of errors on the final resulting policy?
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Value-Aware Model Learning (Farahmand et al 2017)

Goal: Find a model such that the resulting policy is good

Consider: How to derive a policy using Value lteration

™= Q=T+ @max () What we want
a
T* : Q T T '@naXQ What we have
a
Goal: Find aPsuchthat /7% Q _ T* Q



Value-Aware Model Learning | ;

Goal: FindaPsuchthat 7™ () = T* Q

A

To do that: Minimize E[P*V — 75V] = E[(P* —P)V]

In expectation over data,
How different is value under dynamics of my model,
compared to true model



Value-Aware Model Learning (Farahmand et al 2017)

A

E[P*V — PV] = E[(P* — P)V]

Is there a problem? We don’t have this!

/ [P* (dz'|z,a) — P(dz'|z, a)]2

cg,y(ﬁ,P*;V) = /dz/(a;,a)



Value-Aware Model Learning (Farahmand et al 2017)

Is there a problem? We don’t have this!

cg,y(ﬁ,P*;V) = /du(:c,a) /[P*(dm’|m,a) —75(dzc’|:c,a)]2
cg,,,(ﬁ,'P*) = /du(az, a [P*(dw'|:c,a) — ’f’(dx'|x,a)] V(z") 2

Idea: Be robust and consider worse case




VAML algorithm

Qo <— T When we have this

Q1+ 7 775(1

QZ — 1+ ’775(2)‘/1

Collect data using Q

Solve robust problem 75(’6) — arg mi [(7:)* . P)V]

PeM

Why do this



Iter VAML algorithm

QO r When we have this

Q1< T 775(1

QQ — T - ’775(2)‘/1

P*) « argmin sup E[(P* —
PEM  VEF

P*) « arg min E 73.
PeM




lterative VAML - Estimates needed

A

deal  E[P*V — PV] =E[(P* — P)V]

!@X’P‘ da:’|z maXQk(:I; a')
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PeM
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lterative VAML - Estimates needed

|deal

Qk:—|—1 — T;;(k) Qk

Approximate Value lteration (Fitted Value or Q-lteration)

. 1
Qk+1 < argmin — Z

n




Algorithm 1 Model-based Reinforcement Learning Algorithm with Iterative VAML

//MDP (X, A, R, P*,)
// K: Number of iterations
/l M Space of transition probability kernels
/] FIAl: Space of action-value functions
/I G: Space of reward functions
Initialize a policy mo and a value function Vp.
fork=0to K —1do
Generate tra1n1ng set DY) = = (X3, Az, R;, X;)}i—, by interacting with the true environment (potentially
using ), i.e., (X, A;) ~ v with X ~ P*(:| X, A;) and R; ~ R*(:| X, A;).
2

PETD  argming ‘ Vi(X{) — [ P(d'| X:, Ai) Vi (2’

uk_ D
7 < argmin, . Lossr (r; Uff:OD,(f))

3 . . 2
Qr4+1 a.rgminQefw )Q(Xz, Az) — (’f'(XZ, Az) + 7I'P(k+1)(dx'|Xi, Az)Vk(x/)) '

k ()"
Ui—0DPn

Trt1 < T(+; Qr+1)-
end for
return g
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Algorithm 1 Model-based Reinforcement Learning Algorithm with Iterative VAML

//MDP (X, A, R*,P*, )

// K: Number of iterations
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lterative VAML

Summary

e VAML brings value function into model learning
e VAML uses worst case value function for robustness
o Requires solving minimax

e |terVAML uses intermediate value functions from AVI

o Intuition: Why always use worst case when intermediate results are available for use and
approaches the true value function



Theoretical Results

Main question we want to answer:

How do various errors affect the quality of the outcome policy?

Approach:

1. What's the error in one iteration of model learning?
2. How do errors propagate throughout iterations and affect the final policy?
3. Putting the two together will give us the answer!



What's the error in one iteration of model learning?

Formally, we want to provide a bound on the error || (ﬁ(k"'l) — P*)Vill2

Insight 1:
Express in terms of the best possible error given our model class + a constant
e i.e. control the excess error

What are the sources of excess error?

Insight 2:
Error is introduced whenever we do empirical estimates of our loss function

Main intuitive idea:
Control excess error by providing probabilistic bounds on how far away
empirical things might get from their expected value




What's the error in one iteration of model learning?

Compare and contrast true loss function vs. empirical loss function

Single-sample
estimate of P*

“’—'7’“”' i(z,2';P) = [P.V @|
e -GV

L(P) =E[l(Z;P)] i(P) (Z, X", P

=1

Depends on P* Additional Monte carlo estimate
which we don’t have

True (what we want) Empirical (what we have)




What's the error in one iteration of model learning?

Types of loss functions and the sources of error

Pointwise

Population

Empirical

Monte carlo
estimate

Real

Depends on P*
which we don’t have

(= P) £ |(P ~(PVI°

L(P) =E[i(Z;P)]-

Lu(P) = 2 Y u(zsP),

Single-sample
estimate of P*

lA(z,a:’,P) s |PZV —|2

Estimate

Ln(P) = ;zn:l(z X:P).



What's the error in one iteration of model learning?

Reminder: We wanted to control excess error, which is how much worse is our
solution vs the best possible

P « argmin L(P). P < argmin L,,(P)
PeM PeM
Best possible lterVAML's solution

Formally, excess error is controlled if we can show

~

L(P) < L(P)+ C(1/8) with probability at least 1 — &



What's the error in one iteration of model learning?

~

To show L(75) — L(P) < C(1/8) with probability atleast 1 _ 5

Relate population real @ and empirical real
Relate empirical real @ and empirical estimate

Population real Empirical real Empirical estimate
The thing we actually  Intermediate step The only thing we can actually
care about compute

Goal: Express population real in terms of empirical real in terms of
empirical estimate in terms of constants




What's the error in one iteration of model learning?

Relate population real and empirical real @) - Ln(f))

Let’s define a space of functions that maps (s,a) to excess error

G={z—=1lp(2) —lp(2) : PeM}

Bartlett et al. [2005] showed with probability at least 1—0;

n



What's the error in one iteration of model learning?

How did we do this?

G={z—1p(z) —lp(2) : PeM}

L(P) - L(’ﬁ) <9 (Ln('P) B Ln(ﬁ)> . 2¢ @ (11 @—I— 2¢c2 B) ln(-gl—l—)

B n

Required assumption: Required assumption:
Value function is bounded

A certain model space complexity —

bounded local Rademacher complexity of G

Intuition: Empirical real loss probably lies close to population real loss if
make assumptions on

1. Complexity of the model function space
2. Boundedness of value function



What's the error in one iteration of model learning?

Relate empirical real - and empirical estlmate.

(z,2;P) = |P.V - V(@)|° =[P,V —P:V+P:V V()|
= |(P. = PP+ [P}V = V(@)[* +2((P. — P;)V][P;V — V(2')]
=lp(2)

€D 3y -ver e S (@) pav(s) v
i=1 =1

Lo Zer(P)



What's the error in one iteration of model learning?

=1

-~ -

éea éeI(’P)

Step 1: Rearrange equation so green is on the left and red is on the right
Step 2: Bound red in terms of constants

l—«

J(P,P) < e(@, Vinax, R) ‘ Pz, — P V| tn
£ el ay; Vinsns B )X
. | B (44V2 + co x 4V2 ) In(1/63)] 2
[215 U(P—P)V‘ } S malil -

< ¢(a, Vinaxs R)tn X
1l—«
¢ =

4V2

max

[2 (L) - L(B)) + -2 +(F) + (88V.2, + o X 4V2,) 1n(1/53)}

n

)



What's the error in one iteration of model learning?

_%g@ X)| 2% —Z PaVi(PLy ~Vxi].

\ . 7

éed :eI(P)

Step 1: Rearrange equation so green is on the left and red is on the right
Step 2: Bound red in terms of constants

Empirical real also probably lies close to empirical estimates, which can
subsequently be expressed as constants by making the same assumptions on:

1. Complexity of the model space
2. Boundedness of value function



What's the error in one iteration of model learning?

With a lot of work, we can put everything together A1. New i.i.d. Data
A2. Model capacity
A3. Bounded Value

Theorem 1. Suppose that Assumptions Al, A2, and A3 hold. Consider P obtained by solving (11).
There exists a finite c(a) > 0, depending only on o, such that for any § > 0, with probability at least
1 — 0, we have

V2 Rite \/log(1/s
< inf ([P PV, + A Vel I0BE/O

2
—_— 1 .
2,1/ PEM n1+a

T

L(P) < L(P) C(1/6)

|?. -2V




What's the error in one iteration of model learning?

With a lot of work, we can put everything together A1. New i.i.d. Data
A2. Model capacity
A3. Bounded Value

Theorem 1. Suppose that Assumptions Al, A2, and A3 hold. Consider P obtained by solving (11).
There exists a finite c(a) > 0, depending only on o, such that for any § > 0, with probability at least
1 — 0, we have

) 2 , c()V2, Rite \/log(1/d
|2y < mt (P~ Py, 4+ A eV I0BU/0)
2,1/ PEM ’ n1+a
Model Learning Approximation Estimation
Error Error

error



How do errors propagate and affect the final policy?
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and the final resulting policy x () = argmax, 4, Q(z, a).
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/ )

Optimal value ~ Value of Tk (33)
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How do errors propagate and affect the final policy?

Let’s consider a sequence of QO, Ql, S s e QK,
and the final resulting policy x () = argmax, 4, Q(z, a).
We are interested in ||Q" — Q™% ||, ’

Modeling error
€ — (P* —ﬁ(k_i_l)) m@XQAk(°,a’), k’ZO,l,...,K— 1

a
Regression error
* A A
6k:T’ﬁ(k+1)Qk—Qk+17 k:()’].,...,K_].



How do errors propagate and affect the final policy?

We want to represent ||Q* — Q™% ||, p

Modeling error

€ — (P* _ﬁ(k—i—l)) m@XQAk(°,CLI), k:O,l,...,K— 1

We just upper bounded this in Theorem 1!



How do errors propagate and affect the final policy?

We want to represent ||Q* — Q™% ||, p

Modeling error

€ — (P* _ﬁ(k—i—l)) m@XQAk(°,CLI), k:O,l,...,K— 1

Regression error

ek = Thopny @k — Qrt1, k=0,1,..., K —1
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We want [|Q@" — Q™ ||, ,

1. Represent Q* —in terms of Q*

How good we How good we
actually are think we are
at the end at the end

2. Represent Q* — QKin terms of Q*

How good we
and € and €k (error propagation) think we are
at each step

3. Take expectation of Q* — QWK to get ”Q* — Qﬂ-K”l,p
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2. Represent Q* — Qi interms of Q* — Qy,
EL and ég
We first upper and lower bound ()™ — Qk

Q* — Q1< YP™ (Q* — Qx) + A

and

Q" — Qk+1 > P (Q* — Qk) + Ag

where A = € + Yer



2. Represent Q* — Qi interms of Q* — Qy,
EL and ég
We first upper and lower bound ()™ — Qk

Q* — Qri1 < VP™ (Q* — Qi) + Ay

and

Q" — CA21~c+1 > P (Q* — Qk) + Ag

Q: How do we get from QQ* — Qk:+1 to (Q* — QK?

where A = € + Yer



2. Represent Q* — QKin terms of ()™ — Qk
EL and ég

By induction,

Q* — Q1< YP™ (Q* — Qx) + A

N |
S AE R (PT R A oK (PR (@ — Qo)

k=0

whereA — k—l—’yek

I A



2. Represent QQ*
EL and ég

By induction,

— Qxinterms of Q* — Qx4

Q* — Qri1 < VP™ (Q* — Qi) + Ay



2. Represent Q* — QKin terms of ()™ — Qk
EL and ég

Similarly, by induction,

A

Q" — Qk+1 > P (Q* — Qk) + Ag

=

—1
Q* o QK 2 ,YK—l—k (Pﬂ'K_l . 'Pﬂ-k—H) Ak 4+ ,YK (PWK_l . 'Pﬂ-o) (Q* o QO)
k

I
o

where Ak — £ YEk



1. Represent Q" — Q™ interms of Q* — Qx
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1. Represent Q" — Q™ interms of Q* — Qx

(@ - @) <y @A=7P™) 7 (P = P™) (Q" - Q)

ﬁ
~

K—
Z HPTYEE A+ (PR (@ - Qo)

Q* . QK > Z ,YK 1—k (Pﬂ'K 1, Pwk+1) Ak: ‘|"YK (P'/rK_l . 'PWO) (Q* . QO)

L o y




1. Represent Q" — Q™ interms of Q* — Qx
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1. Represent Q" — Q™ interms of Q* — Qx

K-1

Q" — Q™ <y (TP ! > AT (PR 4 (P P ) A+
k=0

TP (P )

Q" - Q| ]
To simplify notation:
1 -

Q" — Q™ <Ak Z o Ap| Ap| + ax Ax|Q* — Qo

L k=0 :




3. Take expectation of Q* — Q"¥ to get [|@" — Q™% ||, ,

K —1

Q" — Q" < Ak Z arAr|A| + ox Ak |Q* — Qo

!

K —1

1Q* — Q™ ||y , <Ak | ) arpAi|Ar| + axpAr|Q* — Qo
| k=0 _




3. Take expectation of Q* — Q"¥ to get [|@" — Q™% ||, ,

K —1

1Q* — Q™ ||y , <Ak | ) arpAi|Ar| + axpAk|Q* — Qo
| k=0 _
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3. Take expectation of Q* — Q"¥ to get [|@" — Q™% ||, ,
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Q" — Q7% |l,, <A | anpArlAnl+ aKpA 0o
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1. Upper-bound |(QQ* — Q0|using the fact that ()™ — QA0| < 2Vinag
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2. Allow expectation of Ay w.r.t. data generating distribution 1/



3. Take expectation of Q* — Q"¥ to get [|@" — Q™% ||, ,

_ _
Q" — Q™ I, <Ak | ) akPA-i- ax pAk|Q* — Qol
k=0 _

1. Upper-bound |(QQ* — Q0|using the fact that ()™ — QA0| < 2Vinag

2. Allow expectation of Ay w.r.t. data generating distribution 1/

Recal: Ap, = €1 + Yeg
ek = Thopn @k — Qi1 k=0,1,...,K —1
€k = (’P*—ﬁ(k—l_l)) ma/,XQk(-,a’), k‘=0,1,...,K—1

a



3. Take expectation of Q* — Q"¥ to get [|@" — Q™% ||, ,
K —1 1

1Q* — Q™ ||y , <Ak | ) arpAi|Ar| + axpAk|Q* — Qo
| k=0 _

1. Upper-bound |(QQ* — Q0|using the fact that ()™ — Q0| < 2Vinag

2. Allow expectation of Ay w.r.t. data generating distribution 1/

V

2y = K
* TK < 2 max
10"~ @y < (s [Oo) x| (Il + 7 lewllay) + 27 B




How do errors propagate and affect the final policy?

Theorem 2. Consider a sequence of action-value function (Qk)fzo, and their corresponding
(Vi)K_,, each of which is defined as Vi, (z) = max, Qk(z,a). Suppose that the MDP is such that

the expected rewards are R,,,.-bounded, and QO is initialized such that it is Vg < ?j’“; -bounded.

Let €, = T;(Hl)Qk — Qk—}—l (regression error) and ey, = (P* — ’ﬁ(kH))Vk (modelling error) for
k=0,1,...,K — 1. Let Tk be the greedy policy w.r.t. Qx, ie., Tr () = argmax,¢ 4 Q(:p, a) for
all x € X. Consider probability distributions p,v € M(X x A). We have

2y = «
19" = @™, < Tz |Clov)  max | (leklly,, + 7 llexls,, ) + 27 Rmax]




How do errors propagate and affect the final policy?

1. We want Q* - Q%pi_K
2. Get abound for Q* - Qhat K in terms of delta
a. Start off with Q*- Qhat k+1

b. Express Qhatk+1 with delta error
c. Get upper and lower bound using P* and Ppi_k respectively

Relate Q* - Q*pi_k to Q* - Qhat K by adding and subtracting term
Add rho

Remove Q* - Q0 by Vmax

Substitute in c(rho, nu) to get expectation in data

A



How do errors propagate and affect the final policy?

Theorem 2. Consider a sequence of action-value function (Qk)fzo, and their corresponding
(Vi) I, each of which is defined as Vi,(z) = max, Q(z, a). Suppose that the MDP is such that
the expected rewards are R,,,.-bounded, and QO is initialized such that it is Vg < ?j’“;; -bounded.
Let €, = T;(Hl)Qk — Qk+1 (regression error) and ey, = (P* — ’ﬁ(kH))Vk (modelling error) for
k=0,1,...,K — 1. Let mx be the greedy policy w.rt. Qx, i.e., Tk (x) = argmax.,c 4 Q(z,a) for
all x € X. Consider probability distributions p,v € M(X x A). We have

i 27 9 K
— (OTK &
197~ 9%, = T3y |10 o (el + ”> i x]

Use Theorem 1 to bring everything together




How do errors propagate and affect the final policy?

From Theorem 1:

2
max
1

; ; 2 V2, Rite \/log(K/5
lexll3,, = [|(BE+ — P2V o) 08(K/9)

< fH . — PV,
2,u_7>1£/\/l (P= = PZ) Vi

SV nlto

with probability at least 1 — § / K.



How do errors propagate and affect the final policy?

From Theorem 1:
c(a)V2, Rite \/log(K/d)

2
2 _ H(k+1) V £ inf H D V R
lexllz,, H(Pz PV 2w = PeM (P= = P2)Vi 2,v e

with probability at least 1 — § /K. \

Since Vk is random, we upper bound the model approximation error

2




How do errors propagate and affect the final policy?

From Theorem 1:
c(a)V:2 Rite log(K/9)

2
— (k+1) V < inf H ¥ ‘A/ max
”ekH” H P2)Vk 2. PeM (P= = P2)Vi 2 e

with probability at least 1 — § /K. \

Since V7, is random, we upper bound the model approximation error

sup mf (P, —P,)V]||,
VeFr+ PEM

,l/



How do errors propagate and affect the final policy?

2
max
1

From Theorem 1:
2 _ S(k+1) *V| < fH . *f/‘
lexl,, = [|(PED PV St (P = POV =

with probability at least 1 — ¢ / K. \

Since Vk is random, we upper bound the model approximation error

inf ||(P, — PV
VS;£+7>12M||( 4

2 +c(a)V2 Rita \/log(K/d)
2

2,v

Apply union bound over all k such that all k = 0, ..., K-1 satisfy with probability 1 — §



How do errors propagate and affect the final policy?

2
max
1

From Theorem 1:
2 _ S(k+1) *V| < fH . *f/‘
lexl,, = [|(PED PV St (P = POV =

with probability at least 1 — ¢ / K. \

Since Vk is random, we upper bound the model approximation error

inf ||(P, — PV
VS;£+7>12M||( 4

2 +c(a)V2 Rita \/log(K/d)
2

2,v

Apply union bound over all k such that all k = 0, ..., K-1 satisfy with probability 1 — §

V2 Rite Jloe(K/S
2 < sup inf (P — PV, + LV T v1oB(K/0)

|ex

VeF+ PeM nilta



How do errors propagate and affect the final policy?

Applying Theorem 2 with llexl3, gives:

Theorem 3. Consider the IterVAML procedure in which at the k-th iteration the model Pk+1) g
obtained by solving (11) and Q1 is obtained by solving (12). Let £, = T % Blkt1) Qi — Qi1 be the
regression error. Suppose that Assumptions Al, A2, and A4 hold. Consider the greedy policy Tk w.rt.

Q. Forany p € M(X x A), there exists a finite c(a) > 0, depending only on o, such that for any
0 > 0, with probability at least 1 — §, we have

* 0 2 F
10 =@l < 2 [0 (e levlla, +2emaia(m)) + 27 ]

v) 0<k<K—1

where

- . c(@) Vinar R4 {/log(K /6
emodel(n) = Sup inf ||(7Dz _Pz)v||2z/+ ( ) m

ver+ PEM ’ nm
and F+ = {max, Q(-,a) : Q € FAI}.

y)



Limitations

e Lack of experiments (see Lambert et al., 2020)

o Bounds might be vacuous empirically

e \alue aware model learning is less transferable

e Requires assumptions on model space complexity


https://arxiv.org/pdf/2002.04523.pdf

Contributions (recap)

e A decision-aware method for model based RL
o Take into account how value based planner would use a model

e An easier optimization problem than prior work
o Reuses some computation, tradeoff with robustness

e Theoretical analysis
o What are the effects of errors on the final resulting policy?



Questions to Consider

e How does IterVAML save computation from VAML?
e Name 2 important assumptions needed error analysis
e What proof technique is used to get Q* — Qk+1 to Q@ — QK



Contributions (Recap)

Approximately one bullet for each of the following (the paper on 1

slide)

e Model based reinforcement suffers from objective mismatch

o

e What is the key limitation of prior work

e What is the key insight(s) (try to do in 1-3) of the proposed work
e What did they demonstrate by this insight? (tighter theoretical

bounds, state of the art performance on X, etc)



Contributions (recap)

Analysis provided probabilistic guarantees on error in final resulting
policy due to modeling and regression error propagation

>=1 slide
What conclusions are drawn from the results?

Are the stated conclusions fully supported by the results and
references? If so, why? (Recap the relevant supporting evidences
from the given results + refs)



Critique / Limitations / Open Issues

1 or more slides: What are the key limitations of the proposed
approach / ideas? (e.g. does it require strong assumptions that are
unlikely to be practical”? Computationally expensive? Require a lot of

data? Find only local optima? )

e |f follow up work has addressed some of these limitations, include
pointers to that. But don't limit your discussion only to the
problems / limitations that have already been addressed.



