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Distributional RL

Scalar value Value distribution

General RL Distributional RL

Instead of approximating the return with a value function, learn the
distribution of the return = n(x, a).

> A better model for multi-modal return distributions

Image https://reinforcement-learning-kr.github.io/2018/09/27/Distributional intro/
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Categorical Distributional RL (CDRL)
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Assumes a categorical form for return distributions n(x, a)
Fixed set of supports z; ... zx
Learn probability p; (x, a) for each k

Image https://joshgreaves.com/reinforcement-learning/understanding-rl-the-bellman-equations/
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Quantile Distributional RL (QDRL)
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Learn K quantiles of the return distributions n(x, a)
Each learnable parameter z; has equal probability mass

Image https://joshgreaves.com/reinforcement-learning/understanding-rl-the-bellman-equations/
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Motivation

Lack of a unifying framework for these distributional RL algorithms

A general approach will
- Assess how well these algorithms model return distributions

- Inform the development of new distributional RL algorithms



Contributions

- Demonstrates that distributional RL algorithms can be decomposed
into some statistics and an imputation mechanism

- Shows that CDRL and QDRL inherently cannot learn exactly the true
statistics of the return distribution

- Develops a new algorithm — EDRL — which can exactly learn the true
expectiles of the return distribution

- Empirically demonstrates that EDRL is competitive and sometimes an
improvement on past algorithms



Bellman equations

Qﬂ($: a) :E'}T [RO +7QW(X1: Al)’XOZSUJ AO :CL]

Bellman equation

Z™(z,a) 2 Ry + 72" (X1, A;)

Distributional Bellman equation?



CDRL and QDRL Bellman updates

Z™(z,a) 2 Ry + 72" (X1, A1)

CDRL QDRL
Update p, (x, a) to the probability Update quantiles z; to the
mass for z;, when Z™ (x, a) is observed quantiles of Z™ (x, a).

projected onto only z; ... 7.

See Appendix A.2
( PP ) (See Appendix A.3)



Any algorithm = Statistics + imputation strategies

CDRL QDRL
Statistics: 51 ... Sk Statistics: 51 ... Sk
K probability masses of return K quantiles of return distribution

distribution projected onto

supports z; ...z

_ Imputation strategy V.
Imputation strategyK‘I’: K

1
z W(E, ) = — E 55

Bellman update:
Sk(z,a) sk ((T7n)(z,a))



Any algorithm = Statistics + imputation strategies

Algorithm 1 Generic DRL update algorithm.
Require: Statistic estimates §1.x(x,a) V(x,a) € X x A
and £k = 1,..., K, imputation strategy W.
Select state-action pair (x,a) € X x A to update.
Impute distribution at each possible next state-action pair:
n(z',a') = V(s1.x(2',a")), V(' ,a') e X x A.
Update statistics at (z,a) € X x A:
Sk(2,a) s ((T70)(x, a)).




Bellman closedness

Bellman closedness: a set of statistics is Bellman closed if, for each
(x,a) € X X A, the statistics s;_x(n,(x,a)) can be expressed purely in

terms of the random variables Ry and s; _x(1,(X1,41))|Xo = x, 4y =
a and the discount factor y.

Theorem 4.3: Collections of moments are “effectively” the only finite
sets of statistics that are Bellman closed. Proof in Appendix B.2



Bellman closedness

The sets of statistics used by CDRL and QDRL are not Bellman closed

Those algorithms are not capable of exactly learning their statistics (* but
in practice seem to be effective anyways...)

Does not imply that they are incapable of correctly learning expected
returns, only distribution



New algorithm: EDRL

Using expectiles

Definition 3.3 (Expectiles). Given a distribution p €
P (R) with finite second moment, and T € [0,1], the T-
expectile of p is defined to be the minimiser q¢* € R of the
expectile regression loss ER(q; i, T), given by

ER(g; 11, 7) = Bz [[T1z5q + (1 — T)12<4] (Z — 9)?] .

For each T € |0, 1], we denote the T-expectile of i by e, ().

Can be exactly learned using
Bellman updates

Expectiles
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Figure 9. Diagram illustrating the similarities
and differences of quantiles and expectiles.



New algorithm: EDRL

Imputation strategy:

Algorithm 2 Stochastic EDRL update algorithm.
Require: Expectile estimates S (z,a) for each (z,a) €

Find a distribution satisfying (7) X Aandk =1 B

Collect sample (z,a,r, x’',a’).

Impute distribution % Zle d,, from target expectiles
V4.ER(q; p, Tz)} =0 Vie [K]. (7) $1.x (', a") by solving (7) or minimising (8).

Scale/translate samples z; < r + yz; Vi.

Update estimated expectiles at (xz,a) € X x A by com-

puting the gradients

N
Vsk(:c a) Zk 1 (Sk(ﬂ?, G.’.), % anl 5zna Tk)

K
2 . .
Z(V ERqﬂvT@)’qi) _ (8) foreachk =1,..., K.

=1

Or (equivalently) that minimizes

(8)




Learnt return distributions
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Experimental Results
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Above: estimation error
EDRL best approximates statistics



Experimental Results
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EDRL does best job at estimating true mean




Experimental Results

Median Human Normalised Score

Mean Human Normalised Score
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Figure 8. Mean and median human normalised scores across all 57
Atari games. Number of statistics learnt for each algorithm indicated in

parentheses.



Discussion of results

 EDRL matches or exceeds performance of the other distributional RL
algorithms

e Using imputation strategies grounded in the theoretical framework
can improve accuracy of learned statistics

e Conclusion: the theoretical framework is sound and useful. Should be
incorporated into future study in distributional RL.



Critigue / Limitations / Open Issues
 EDRL does not give enormous improvements in performance over

other DRL algorithms and is significantly more complex.

* |s it truly important to learn the exact return distribution? Learning an
inexact distribution appears to perform fine with regards to policy
performance, which is what matters in the end.

 Or: perhaps test scenarios are not complex enough to allow
distributional RL to showcase true power



Contributions (Recap)

- Demonstrates that distributional RL algorithms can be decomposed
into some statistics and an imputation mechanism

- Shows that CDRL and QDRL inherently cannot learn exactly the true
statistics of the return distribution

- Develops a new algorithm — EDRL — which can exactly learn the true
expectiles of the return distribution

- Empirically demonstrates that EDRL is competitive and sometimes an
improvement on past algorithms



Practice questions

1. Prove the set of statistics learned under QDRL is not Bellman
closed. (Hint: prove by counterexample)

2. Give an example of a set of statistics which is Bellman closed that is
not expectiles or the mean.




