
QT-Opt: Scalable Deep
Reinforcement Learning
for Vision-Based Robotic

Manipulation
Dmitry Kalashnikov , Alex Irpan , Peter Pastor , Julian
Ibarz , Alexander Herzog , Eric Jang , Deirdre Quillen,

Ethan Holly , Mrinal Kalakrishnan , Vincent Vanhoucke ,
Sergey Levine

Topic: Q Value based RL
Presenter: Vismay Modi

Motivation

Grasping is a very common and
necessary manipulation
problem.

… Motivation ...

In nature, grasping is a
“dynamical process,
interleaving sensing and
control at every stage”

… Motivation ...

It is very difficult, even for
humans…

Definitely difficult for robots.

Woops, it slipped

… Motivation

Prior work in 2 classes:

1. Open loop control:
a. sense -> plan -> act
b. No feedback handling

2. Close loop control:
a. Manually dictated strategies
b. Short-horizon reasoning

The paper:

Contribution…

QT-Opt solves the problem of:

Grasping previously unseen
objects while continuously
updating its strategy

… Contributions…

Grasping is hard because it
requires robots to have:

• Vision
• Strategy
• Control
• Knowledge of the object
• Knowledge of the environment

… Contributions …

Prior works limitations:

• Strategy doesn’t look at feedback (open-loop) [5,6,7,8]
• Requires supervision
• Requires multiple cameras or depth sensing [7,25,29]

… Contributions

Key insights of QT-opt

• Closed loop control
• Dynamic strategies
• Handles changes in the environment

• Self supervised, vision based training
• Long-horizon planning using RL
• Uses a single, over-the-shoulder, RGB camera for vision

96% success on grasping
previously unseen objects

General background and definitions

Behavior policy: How the robot behaves

Update policy: How the robot learns the optimal policy

On-policy learning: The robot learns and behaves using the same
policy

Off-policy learning (Q-learning): The robot learns using a different
policy than behaves

Algorithm (background)...

Q. Whats the goal of RL?

A. “Figure out a policy that selects actions which maximize total
expected rewards”

Q. How do you do that?

A. Solve for an optimal Q(s, a) function, (value function) which
determines the expected rewards received for an action (a) taken in
state (s)

Q. And once you have a good Q function?

A. Recover the policy

Algorithm (background)...

Q. What is a good Q function?

A. In this paper, the authors minimize the bellman error

Q. And once you have a good Q function?

A. Recover the policy

Metric to measure distance

Target value: gets
updated as a better
target value is found

Current Q: Get this to match target

State = image Robot’s action

Network
weights

… Algorithm …

Q. What if Q is non-convex (not easily maximizable)?

A. This is where “QT-opt” is special.

A derivative-free stochastic optimization is done to maximize Q (using
the cross-entropy method).

End “Q & A”

… Algorithm ...

Distributed Async QT-Opt

Training over 7 robots using a
distributed async implementation
of QT-Opt allowed collecting 580k
grasps over several weeks.

… Algorithm…

Dynamic Vision Based Grasping

• Monocular over the shoulder,

RGB camera, 472x472 pixels

MDP for grasping

• State (s) = {camera image, gripper open/closed, gripper height}
• Action (a) = {gripper position, gripper angle, gripper

open/closed, termination}
• Reward function = 1 for holding an object above a certain

height, -0.5 for each time step taken

… Algorithm
Q-function representation

• Large conv net with 1.2M parameters

Experimental Results

Discussion

• Small time penalty (-0.5) increases performances
• No Termination action speeds up the learning rate, but the authors

argue having a termination action would make the MDP
implementation simpler

• Otherwise, results are pretty self evident

More results

Discussion

• The rates of learning differed quite a bit for the different
parameters, surprisingly.

• Maybe some kind of hybrid approach would accelerate training?
• Use the fastest learning parameters for each interval

Critique

Algorithm critique
• Initial policies were hand-scripted to bootstrap data collection
• We don’t know much about the effectiveness of the gradient-free

stochastic optimization method to find an optimal Q.
• Ex. Why terminate CEM after 2 iterations? Why is M,N = 6,64 good values?

Issues

Time discretization issues
• Time step is too large
• The motion of the robot is very unnatural
• Too few time steps allowed (only 20)

Limitations

Implementation limitations
• Immense undertaking with 7 robots and weeks of experimentation
• Not easily replicable

QT-Opt Contributions (Recap)

• Attempts to solve grasping for previously unseen objects
• Uses only one shoulder mounted RGB camera for vision
• Closed-loop control

• Dynamic grasping strategies
• Handles external changes

• Distributional Asynch QT-Opt
• (Mostly) self supervised
• Off-policy learning

• Allows learning on massive set of data (580k graps)
• Distributed across 7 robot arms

• Derivative-free stochastic optimization method to maximize Q
• Results: Near ±90% success rate at grasping

Follow up Q2T-Opt

Q2T-Opt

• Quantile Q-learning: Value function returns a distribution, not a
single scalar value

• Mapping a risk metric to the value distribution
• New policies can be risk-aware or risk-seeking
• Improves the safety of doing RL

• Additionally, Q2T-Opt introduces a way to train the robot off-line

Q2T-Opt Result vs. QT-Opt

Discussion

• Q2T-Opt outperforms QT-Opt
• Standard deviation for Q2T-Opt is much smaller than QT-Opt

Q2T-Opt vs QT-Opt Learn rate

Discussion

• Q2T-Opt Learns faster than QT-Opt, even at the later stages of
learning

Thanks!

