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Motivation

Grasping is a very common and
necessary manipulation
problem.




... Motivation ...

In nature, grasping is a
“dynamical process,
interleaving sensing and
control at every stage”




... Motivation ...

Woops, it slipped
It is very difficult, even for

humans...

Definitely difficult for robots.




... Motivation

Prior work in 2 classes:

1. Open loop control:
a. sense ->plan -> act
b. No feedback handling

2. Close loop control:

a. Manually dictated strategies
b. Short-horizon reasoning
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Abstract: In this paper, we study the problem of learning vision-based dynamic
manipulation skills using a scalable reinforcement learning approach. We study
this problem in the context of grasping, a longstanding challenge in robotic ma-
nipulation. In contrast to static learning behaviors that choose a grasp point and
then execute the desired grasp, our method enables closed-loop vision-based con-
trol, whereby the robot continuously updates its grasp strategy based on the most
recent observations to optimize long-horizon grasp success. To that end, we in-
troduce QT-Opt, a scalable self-supervised vision-based reinforcement learning
framework that can leverage over 580k real-world grasp attempts to train a deep
neural network Q-function with over 1.2M parameters to perform closed-loop,
real-world grasping that generalizes to 96% grasp success on unseen objects.
Aside from attaining a very high success rate, our method exhibits behaviors that
are quite distinct from more standard grasping systems: using only RGB vision-
based perception from an over-the-shoulder camera, our method automatically
learns regrasping strategies, probes objects to find the most effective grasps, learns
to reposition objects and perform other non-prehensile pm-grasp manipulations,
and responds dynamically to disturbances and perturbations.

Keywords: grasping, reinforcement learning, deep learning



Contribution...

QT-Opt solves the problem of:

Grasping previously unseen
objects while continuously
updating its strategy




. Contributions... 472x472 WG

Grasping is hard because it
requires robots to have:

. Vision

. Strategy

. Control

- Knowledge of the object
- Knowledge of the environment




... Contributions ...

Prior works limitations:

. Strategy doesn’t look at feedback (open-loop) [5,6,7,8]
Requires supervision
Requires multiple cameras or depth sensing [7,25,29]




... Contributions

Key insights of QT-opt

Closed loop control
Dynamic strategies
Handles changes in the environment

Self supervised, vision based training
Long-horizon planning using RL
Uses a single, over-the-shoulder, RGB camera for vision

\ 96% success on grasping

previously unseen objects



General background and definitions

Behavior policy: How the robot behaves
Update policy: How the robot learns the optimal policy

On-policy learning: The robot learns and behaves using the same
policy

Off-policy learning (Q-learning): The robot learns using a different
policy than behaves



Algorithm (background)...

Q. Whats the goal of RL?

A. “Figure out a policy that selects actions which maximize total
expected rewards”

Q. How do you do that?

A. Solve for an optimal Q(s, a) function, (value function) which
determines the expected rewards received for an action (a) taken in
state (s)

Q. And once you have a good Q function?
A. Recover the policy 7(s) = argmax, @, (s, a)



Algorithm (background)...

Q. What is a good Q function?
. ... Target value: gets
A. In this paper, the authors minimize the bellman error updated as a better

. target value is found
Metric to measure distance Current Q: Get this to match target arget va

y) = ]E(s,a,s')wp(s,a,s’))@s’ a)wv S’))] ; (1)
\[:lvz’ic;?czk State =image Robot’s action

Q. And once you have a good Q function?
A. Recover the policy 7(s) = argmax, @, (s, a)



... Algorithm ...

Q. What if Q is non-convex (not easily maximizable)?
A. This is where “QT-opt” is special.

A derivative-free stochastic optimization is done to maximize Q (using
the cross-entropy method).

End “Q & A”



... Algorithm ...

Distributed Async QT-Opt

Training over 7 robots using a
distributed async implementation
of QT-Opt allowed collecting 580k
grasps over several weeks.




... Algorithm...

Dynamic Vision Based Grasping
Monocular over the shoulder,
RGB camera, 472x472 pixels

MDP for grasping

. State (s) = {camera image, gripper open/closed, gripper height}
- Action (a) = {gripper position, gripper angle, gripper
open/closed, termination}
Reward function = 1 for holding an object above a certain
height, -0.5 for each time step taken



... Algorithm

Q-function representation
- Large conv net with 1.2M parameter
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Experimental Results

State Termination | Intermediate | Discount Perf. at | Perf. at IM
action reward factor 300K steps steps
Image+gripper No -0.05 0.9 75% 95%
status+height No 0 0.7 68% )27
No 0 0.7 50% 90%
Image only No -0.05 0.9 25% 81%
Image+gripper Yes -0.05 0.9 67% 94%
status+height

Table 7: Simulation studies for tuning grasping task parameters




Discussion

Small time penalty (-0.5) increases performances

No Termination action speeds up the learning rate, but the authors
argue having a termination action would make the MDP
implementation simpler

Otherwise, results are pretty self evident




More results
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Figure 10: Performance graphs of simulation studies for tuning grasping task parameters



Discussion

- The rates of learning differed quite a bit for the different
parameters, surprisingly.

Maybe some kind of hybrid approach would accelerate training?
Use the fastest learning parameters for each interval




Critique

Algorithm critique
- Initial policies were hand-scripted to bootstrap data collection

- We don’t know much about the effectiveness of the gradient-free

stochastic optimization method to find an optimal Q.
« Ex. Why terminate CEM after 2 iterations? Why is M,N = 6,64 good values?




Issues

Time discretization issues

Time step is too large
The motion of the robot is very unnatural
Too few time steps allowed (only 20)




Limitations

Implementation limitations

Immense undertaking with 7 robots and weeks of experimentation
Not easily replicable




QT-Opt Contributions (Recap)

Attempts to solve grasping for previously unseen objects
Uses only one shoulder mounted RGB camera for vision
Closed-loop control

Dynamic grasping strategies
- Handles external changes
Distributional Asynch QT-Opt

(Mostly) self supervised

Off-policy learning

Allows learning on massive set of data (580k graps)
Distributed across 7 robot arms

Derivative-free stochastic optimization method to maximize Q
Results: Near £90% success rate at grasping



Follow up Q2T-Opt

Quantile QT-Opt for Risk-Aware Vision-Based Robotic Grasping

Cristian Bodnar!, Adrian Li%, Karol Hausman®, Peter Pastor®, Mrinal Kalakrishnan®

Abstract— The distributional perspective on reinforcement
learning (RL) has given rise to a series of successful -
learning algorithms, resulting in state-of-the-art performance
in arcade game environments. However, it has not yet been
analyzed how these findings from a discrete setting translate
to complex practical applications characterized by noisy, high
dimensional and continuous state-action spaces. In this work,
we propose Quantile QT-Opt (Q2-Opt), a distributional variant
of the recently introduced distributed Q-learning algorithm [11]
for continuous domains, and examine its behaviour in a series
of simulated and real vision-based robotic grasping tasks. The
absence of an actor in Q2-Opt allows us to directly draw a
parallel to the previous discrete experiments in the literature
without the additional complexities induced by an actor-critic
architecture. We demonstrate that Q2-Opt achieves a superior
vision-based object grasping success rate, while also being more
sample efficient. The distributional formulation also allows us to
experiment with various risk-distortion metrics that give us an
indication of how robots can concretely manage risk in practice
using a Deep RL control policy. As an additional contribution,
we perform experiments on offline datasets and compare them
with the latest findings from discrete settings. Surprisingly, we
find that there is a discrepancy between our results and the
previous batch RL findings from the literature obtained on
arcade game environments,

Despite the improvements distributional Q-learning algo-
rithms demonstrated in the discrete arcade environments, it is
yet to be examined how these findings translate to practical,
real-world applications. Intuitively, the advantageous proper-
ties of distributional Q-learning approaches should be partic-
ularly beneficial in a robotic setting. The value distributions
can have a significant qualitative impact in robotic tasks,
usually characterized by highly-stochastic and continuous
state-action spaces. Additionally, performing safe control in
the face of uncertainty is one of the biggest impediments to
deploying robots in the real world, an impediment that RL
methods have not yet tackled. In contrast, a distributional
approach can allow robots to learn an RL policy that appro-
priately quantifies risks for the task of interest.

However, given the brittle nature of deep RL algorithms
and their often counter-intuitive behaviour [8], it is not
entirely clear if these intuitions would hold in practice.
Therefore, we believe that an empirical analysis of distri-
butional (}-learning algorithms in real robotic applications
would shed light on their benefits and scalability, and provide

essential insight for the robot leamming community.
T thiz naner we aim to addrees thie need and merfarm a




Q2T-Opt

Quantile Q-learning: Value function returns a distribution, not a
single scalar value

Mapping a risk metric to the value distribution
New policies can be risk-aware or risk-seeking
Improves the safety of doing RL

Additionally, Q2T-Opt introduces a way to train the robot off-line



Q2T-Opt Result vs. QT-Opt

Model Mean Success  Success Std  Median Success
QT-Opt 0.903 0.005 0.903
Q2R-Opt (Ours) 0.923 0.006 0.924
Q2F-Opt (Ours) 0.928 0.001 0.928

TABLE I: Final sim success rate statistics. The proposed
distributional methods achieve higher success rate.



Discussion

. Q2T-Opt outperforms QT-Opt
. Standard deviation for Q2T-Opt is much smaller than QT-Opt




Q2T-Optvs QT-Opt Learn rate

Sim Success Rate Sim Sample Efficiency
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Fig. 3: Sim success rate as a function of the global step. The  Fig. 4: Sim success rate as a function of the number of
distributional methods achieve higher grasp success rates in  generated environment episodes. The distributional methods
a lower number of global steps. are significantly more sample efficient than QT-Opt.



Discussion

Q2T-Opt Learns faster than QT-Opt, even at the later stages of
learning




Thanks!

Videos here:
https://sites.google.com/view/qtopt




