Bridging the Gap Between
Value and Policy Based
Reinforcement Learning

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale
Schuurmans

Topic: Q-Value Based RL
Presenter: Michael Pham-Hung

Motivation

Motivation

i.e. Q-Learning Value Based RL

+ Data efficient
+ Learn from any trajectory

Motivation

i.e. Q-Learning Value Based RL Policy Based RL i.e. REINFORCE

+ Data efficient + Stable deep function approximators
+ Learn from any trajectory

Motivation

i.e. Q-Learning Value Based RL Policy Based RL i.e. REINFORCE

+ Data efficient + Stable deep function approximators
+ Learn from any trajectory

Motivation

i.e. Q-Learning Value Based RL Policy Based RL i.e. REINFORCE

+ Data efficient + Stable deep function approximators
+ Learn from any trajectory

Contributions

Problem: Combining the advantages of on-policy and off-policy learning.

Contributions

Problem: Combining the advantages of on-policy and off-policy learning.

Why is this problem important?:

- Model-free RL with deep function approximators seems like a good idea.

Contributions

Problem: Combining the advantages of on-policy and off-policy learning.

Why is this problem important?:
- Model-free RL with deep function approximators seems like a good idea.

Why is this problem hard?:
- Value-based learning is not always stable with deep function approximators.

Contributions

Problem: Combining the advantages of on-policy and off-policy learning.

Why is this problem important?:
- Model-free RL with deep function approximators seems like a good idea.

Why is this problem hard?:
- Value-based learning is not always stable with deep function approximators.

Limitations of prior work:
- Prior work remain potentially unstable and are not generalizable.

Contributions

Problem: Combining the advantages of on-policy and off-policy learning.

Why is this problem important?:

- Model-free RL with deep function approximators seems like a good idea.
Why is this problem hard?:

- Value-based learning is not always stable with deep function approximators.
Limitations of prior work:

- Prior work remain potentially unstable and are not generalizable.

Key Insight: Starting from first principles rather than performing naive approaches
can be more rewarding.

Revealed: Results in flexible algorithm.

Outline
Background

- Q-Learning Formulation

- Softmax Temporal Consistency

- Consistency between optimal value and policy
PCL Algorithm

- Basic PCL

- Unified PCL

Results

Limitations

Q-Learning Formulation

Opr(s,m) = z n(als)[r(s,a) + y(Ogr(s’,m)]|, wheres' = f(s,a)

a

Q-Learning Formulation

Opr(s,m) = z n(als)[r(s,a) + y(Ogr(s’,m)]|, wheres' = f(s,a)

a

V°(s) = max Ogr (s, m), m° = argmax ,Ogp (s,)
T

Q-Learning Formulation

Opr(s,m) = z n(als)[r(s,a) + y(Ogr(s’,m)]|, wheres' = f(s,a)

a

One-hot
Ve(s) = max Orr (s,), m° = argmax ;O0gr (S,) distribution

Q-Learning Formulation

Opr(s,m) = z n(als)[r(s,a) + y(Ogr(s’,m)]|, wheres' = f(s,a)

a

V°(s) = max Ogr (s, m), m° = argmax ,Ogp (s,)
T

Ve(s) = Ogr(s,m°) = mazllx(r(s, a) + yV°(s’))

Q-Learning Formulation

Orp(s,m) = z (al|s)[r(s,a) + y(Ogr(s’,m)], wheres' = f(s,a)

a

V°(s) = max Ogr (s, m), m° = argmax ,Ogp (s,)
T

Ve(s) = Ogr(s,m°) = mazlix(r(s, a) + yV°(s’))

Hard-max Bellman
temporal
consistency!

Q-Learning Formulation

Orr(s,m) = z m(al|s)[r(s,a) + y(Ogr(s’,m)], wheres' = f(s,a)

a

V°(s) = max Ogr (s, m), m° = argmax ,Ogp (s,)
T

Ve(s) = Ogp(s,m°) = méix(r(s, a) + yV°(s’))

Or in terms of optimal action values

0°(s,a) =r(s,a) + ym,axQ°(s’, a’)

Hard-max Bellman
temporal
consistency!

Soft-max Temporal Consistency

- Augment the standard expected reward objective with a discounted
entropy regularizer

- This helps encourages exploration and helps prevent early
convergence to sub-optimal policies

° OENT(S' Tl:) — OER(S,T[) + T]HI(S, Tl:)

OENT(S' Tl:) — OER(S,T[) + T]HI(S, Tl:)

H(s,) = Z n(als)|—logm(als) + yH(s',m)]

a

OENT(S' Tl:) — OER(S,T[) + T]HI(S, Tl:)

H(s,) = Z n(als)|—logm(als) + yH(s',m)]

a

Opwr(s,m) =) m(als)[r(s,@) — tlogm(als) + yOgnr (s', m)]

a

° OENT(S' Tl:) — OER(S,TL') + TH(S, Tl:)

H(s,) = Z n(als)|—logm(als) + yH(s',m)]

a

Opwr(s,m) =) m(als)[r(s,@) — tlogm(als) + yOgnr (s', m)]

a
r(s,a) + yV*(s’ o
*(als) o« exp{ (s,@) +yV()} Form of a Boltzmann distribution ... No longer one hot
T distribution! Entropy term prefers the use of policies with
more uncertainty.

S.ubbing n*(als) into Ogy7 vyields:

r(s,a) + yV*(s’)}

T

V*(s) = Ognr(s,m*) = Tlogz exp{
a

And

Q*(s,a) =r(s,a) +yV*(s') =r(s,a) + yrlogz exp(Q*(Sl' a’))

T

Subbing m*(al|s) into Ogyt vields:

T

V*(s) = Ogpnr(s, ") = Tlogz exp {T(S' a) + VV*(S,)}

And

Q*(s,a) =r(s,a) +yV*(s') =r(s,a) + yrlogz exp(Q*(Sl' a’))

T

Note the log-sum-exp form!

Consistency Between Optimal Value & Policy

exp{(r(s,a)+)/V*(S,))/T} Normalization
exp{V*(s)/t} — Factor

e Let m*(als) =

Consistency Between Optimal Value & Policy

exp{(r(s,a) +yV* (s'))/r}
exp{V*(s)/7}

e Let m*(als) =

log(n*(als)) = (r(s, a) + yV*(s’))/r —V*(s)/t

Consistency Between Optimal Value & Policy

exp{(r(s,a) +yV* (s'))/r}
exp{V*(s)/7}

e Let m*(als) =

log(n*(als)) = (r(s, a) + yV*(s’))/r —V*(s)/t

Vi(s) —yV*(s") =r(s,a) — tlogm*(als)

Consistency Between Optimal Value & Policy

exp{(r(s,a) +yV* (S’))/T}
exp{V*(s)/7}

e Let m*(als) =

log(n*(als)) = (r(s, a) + yV*(s’))/T —V*(s)/t

Vi(s) —yV*(s") =r(s,a) — tlogm*(als)

Valid for any action a

Consistency Between Optimal Value & Policy

Note: The optimal policy can also be characterized in terms of Q*:

Q*(S) Cl) o V*(S)

n (als) = exp(-—"———)

Theorem 1: For T > 0, the policy m" that maximizes Ogyr and state values V™ (s)
= max Ogyr (s, m) satisfy the following temporal consistency property for any state s and action a

(whgre s'" = f(s,a)):

Vi(s) —yV*(s") =r(s,a) — tlogm*(als)

Theorem 1: For T > 0, the policy m" that maximizes Ogyr and state values V™ (s)
= max Ogyr (s, m) satisfy the following temporal consistency property for any state s and action a

(whgre s'" = f(s,a)):

Vi(s) —yV*(s") =r(s,a) — tlogm*(als)

Corollary 2: Fort > 0, the optimal policy ™ and optimal state values V" satisfy the following
extended temporal consistency property, for any state s; and any action sequence a4, ..., as_4
(where s;4q = f(s;,a;)):

t—1
Vi) =y W) =) v (s a) — Tlogn” (aylsy)
i=1

Theorem 1: For T > 0, the policy m" that maximizes Ogyr and state values V™ (s)
= max Ogyr (s, m) satisfy the following temporal consistency property for any state s and action a

(whgre s'" = f(s,a)):

Vi(s) —yV*(s") =r(s,a) — tlogm*(als)

Corollary 2: Fort > 0, the optimal policy ™ and optimal state values V" satisfy the following
extended temporal consistency property, for any state s; and any action sequence a4, ..., as_4

(where s; 1 = f(s;,a;)):
t—1
Vi) =y =)y (s, a) — tlogr (ayglsy)
i=1

Theorem 3. If a policy m(a | s) and state value function V () satisfy the consistency theorem 1 for
all states s and actions a (wheres’ = f(s,a)), thenr =n*andV = V"

Theorem 1: For T > 0, the policy m" that maximizes Ogyr and state values V™ (s)
= max Ogyr (s, m) satisfy the following temporal consistency property for any state s and action a

(whgre s'" = f(s,a)):

Vi(s) —yV*(s") =r(s,a) — tlogm*(als)

Corollary 2: Fort > 0, the optimal policy ™ and optimal state values V" satisfy the following
extended temporal consistency property, for any state s; and any action sequence a4, ..., as_4

(where s; 14 = f(s;,a;)):

t—1
Vi) = yV () =) YT G, ap) — Tlog (aylsy)]
i=1

Theorem 3. If a policy m(a | s) and state value function V () satisfy the consistency theorem 1 for
all states s and actions a (wheres’ = f(s,a)), thenr =n*andV = V"

Algorithm - Path Consistency Learning (PCL)

PCL attempts to minimize the squared soft consistency error over a
set of sub-trajectories E.

Define a notion of soft consistency for d-length sub-trajectory
Siivg = (S, a4, oo, Sitg—1,Aj+d—1, Si+4)- From corollary 2.

d-1
CCsiirar8) = Vo(s) =YWV Csira) +) ¥ [r(siajpie) — Tlogmp(aelsie)]

j=0

Goal is to find V 4 and my that gets C(s;.;14, 0, ¢) close to zero

[J
Define squared soft consistency error:

1
OpcL = Z EC(Si:i+d»9»¢)2

Si:i+d€E

We then get updates for 8 and ¢ by taking the gradient:

d—1

A6 = 1 C(stivar0,8)) ¥IVglogm(aissis)
j=0

Ap = 1,C(Spivar 0, D) VeV (s)) — ¥4V Ve (siva)]
Where n, and n,, are the learning rates for policy and value.

Algorithm - Path Consistency Learning (PCL)

Given that the consistency property must hold on any path, the PCL
algorithm can apply the updates both to trajectories sampled on-policy
from 1y as well as trajectories sampled from a replay buffer

Algorithm 1 Path Consistency Learning

Input: Environment £ NV, learning rates 7, 1,,, discount factor -, rollout d, number of steps /V,
replay buffer capacity B, prioritized replay hyperparameter c.
function Gradients(sg.7")

// We use G(St.1+4,Tg) to denote a discounted sum of log-probabilities from s; to Sy 4.

Compute Al = Zf:_()d Cg’qg(St;t_*_d)VQG(Sth_d, 7T,9).
T—d

Compute Agp =) . Cp 4(St:t+d) (V¢V¢(st) — ’de¢V¢(st+d)).
Return AO, A¢p
end function
Initialize 6, ¢.
Initialize empty replay buffer RB(«).
fori =0to N —1do
Sample sg.7 ~ mg(sg.) on ENV.
A6, Ap = Gradients(sq.7).
Update 6 < 0 + 1, A6.
Update ¢ < ¢ + ny Ao.
Input sg.7 into RB with priority R (sq.7).
If |[RB| > B, remove episodes uniformly at random.
Sample sg.7 from RB.
A6f, Ap = Gradients(sq.7).
Update 0 < 0 + 0, A6.
Update ¢ < ¢ + 1, Ad.
end for

Algorithm - Unified PCL

Recall:
Q*(s,a) =r(s,a) +yV*(s') =r(s,a) + yrlogz exp(Q (ST' -))
= %(s) — Tlogz exp {Qp (:' a)}
And,)

N

(Qp(s,0) = ()

\ T J

—

m,(als) = exp |

Algorithm - Unified PCL

Then the new update rule for P ig: .

Ap =Nz C(Siiva P) Z vy V,logm,(atj|sis))
j=0
+0,C(Spivar) (V¥ (50) = YV, Vp (i))

Merging the policy and value function models in this way is significant
because it presents a new actor-critic paradigm where the policy
(actor) is not distinct from the values (critic)

Experimental Results

PCL can consistently match or beat the performance of A3C and double
Q-learning.

PCL and Unified PCL are easily implementable with expert trajectories.
Expert trajectories can be prioritized in the replay buffer as well.

Synthetic Tree Copy DuplicatedInput RepeatCopy

35 100

20

80

15 | '
20 9

10 15 + 40 —
10 -
5 20
N
0 -+ . 0 0
0 50 100 0 1000 2000 0 1000 2000 3000 0 2000 4000
Reverse ReversedAddition ReversedAddition3 Hard ReversedAddition
) 20 - 30
30
| 25
25 15 -
20 20 -
15 10 - 15 -
10 - 10
5 |
5 - 5
0 T —= T 0 - - 0 =
0 5000 10000 0 5000 10000 0 20000 40000 60000 0 5000 10000
PCL 1 A3C 1 DQN

The results of PCL against A3C and DQN baselines. Each plot shows average reward across 5 random
training runs (10 for Synthetic Tree) after choosing best hyperparameters. A signal standard deviation bar
clipped at the min and max. The x-axis is number of training iterations. PCL exhibits comparable
performance to A3C in some tasks, but clearly outperforms A3C on the more challenging tasks. Across all
tasks, the performance of DQN is worse than PCL.

Synthetic Tree Copy DuplicatedInput RepeatCopy

20 35 - 16 100 -
30 14 /
80
15 o 12 —
20 10 60
10 8
15
2 6 10
] 10 n
20
2
0 oM 0 0 &
0 50 100 0 1000 2000 0 1000 2000 3000 0 2000 1000
Reverse ReversedAddition ReversedAddition3 Hard ReversedAddition
30 30 f 30 30
25 25 25 25
’,_’—
20 20 20 20
1 1 15 1
10 10 10 10
5 5 J 5 [5 /
0 - 0 0 f’——_// 0 -
0 5000 10000 0 5000 10000 0 20000 10000 60000 0 5000 10000
PCL Unified PCL

The results of PCL vs. Unified PCL. Overall found that using a single model
for both values and policy is not detrimental to training. Although in some
of the simpler tasks PCL has an edge over Unified PCL, on the more difficult
tasks, Unified PCL performs better.

Reverse ReversedAddition ReversedAddition3 Hard ReversedAddition

10 4 10 4 10 H 10 4

! T 1
0 2000 1000 0 2000 1000 0 20000 10000 60000 0 5000 10000

PCL i PCL + Expert

The results of PCL vs. PCL augmented with a small number of expert
trajectories on the hardest algorithmic tasks. We find that incorporating
expert trajectories greatly improves performance.

Discussion of results

Using a single model for both values and policy is not detrimental to
training

The ability for PCL to incorporate expert trajectories without requiring
adjustment or correction is a desirable property in real-world
applications

Critique / Limitations / Open Issues

- Only implemented on simple tasks
- Addressed with Trust-PCL, which enables a continuous action space.

- Requires small learning rates
- Addressed with Trust-PCL, which uses Trust Regions

- Proof was given for deterministic states but also works for stochastic
states as well.

Contributions

Problem: Combining the advantages of on-policy and off-policy learning.

Why is this problem important?:

- Model-free RL with deep functions approximators seems like a good idea.
Why is this problem hard?:

- Value-based learning is not always stable with deep function approximators.
Limitations of prior work:

- Prior work remain potentially unstable and are not generalizable.

Key Insight: Starting from a theoretical approach rather than naive approaches can
be more fruitful.

Revealed: Results in a quite flexible algorithm.

Exercise Questions

1. What are the advantages from Value-based Learning and what are the
advantages from Policy-based Learning

exp{(r(s,a)ﬂ/V* (s'))/r}
exp{V*(s)/t}

2. Derive the Softmax temporal consistency from * =

