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Profit.
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Problem: Combining the advantages of on-policy and off-policy learning.

Why is this problem important?:

- Model-free RL with deep function approximators seems like a good idea.

Why is this problem hard?:

- Value-based learning is not always stable with deep function approximators.

Limitations of prior work:

- Prior work remain potentially unstable and are not generalizable.

Key Insight: Starting from first principles rather than performing naïve approaches 
can be more rewarding.

Revealed: Results in flexible algorithm.
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Soft-max Temporal Consistency

- Augment the standard expected reward objective with a discounted 
entropy regularizer

- This helps encourages exploration and helps prevent early 
convergence to sub-optimal policies
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Form of a Boltzmann distribution … No longer one hot 
distribution! Entropy term prefers the use of policies with 
more uncertainty.
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Note the log-sum-exp form!
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Algorithm - Path Consistency Learning (PCL)
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Experimental Results

PCL can consistently match or beat the performance of A3C and double 
Q-learning.

PCL and Unified PCL are easily implementable with expert trajectories. 
Expert trajectories can be prioritized in the replay buffer as well.



The results of PCL against A3C and DQN baselines. Each plot shows average reward across 5 random 
training runs (10 for Synthetic Tree) after choosing best hyperparameters. A signal standard deviation bar 
clipped at the min and max. The x-axis is number of training iterations. PCL exhibits comparable 
performance to A3C in some tasks, but clearly outperforms A3C on the more challenging tasks. Across all 
tasks, the performance of DQN is worse than PCL.



The results of PCL vs. Unified PCL. Overall found that using a single model 
for both values and policy is not detrimental to training. Although in some 
of the simpler tasks PCL has an edge over Unified PCL, on the more difficult 
tasks, Unified PCL performs better. 



The results of PCL vs. PCL augmented with a small number of expert 
trajectories on the hardest algorithmic tasks. We find that incorporating 
expert trajectories greatly improves performance.



Discussion of results

Using a single model for both values and policy is not detrimental to 
training

The ability for PCL to incorporate expert trajectories without requiring 
adjustment or correction is a desirable property in real-world 
applications



Critique / Limitations / Open Issues 

- Only implemented on simple tasks
- Addressed with Trust-PCL, which enables a continuous action space.

- Requires small learning rates
- Addressed with Trust-PCL, which uses Trust Regions

- Proof was given for deterministic states but also works for stochastic 
states as well.



Contributions 
Problem: Combining the advantages of on-policy and off-policy learning.

Why is this problem important?:

- Model-free RL with deep functions approximators seems like a good idea.

Why is this problem hard?:

- Value-based learning is not always stable with deep function approximators.

Limitations of prior work:

- Prior work remain potentially unstable and are not generalizable.

Key Insight: Starting from a theoretical approach rather than naïve approaches can 
be more fruitful.

Revealed: Results in a quite flexible algorithm.



Exercise  Questions 
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