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Motivation: Overoptimism

* Q-learning methods are known to be overestimating the Q value

DQN and other Q learning methods have this common issue and their
performances are lowered due to that.

But how bad is this error? And how it affect the model performance.

Double Q learning is known to be a solution for this overestimation
problem, how to combine it with DQN?



Contributions

Double DQN
- Combining DQN and Double Q-learning to solve overoptimism problems for
Q values

Provide a solid theoretical analysis of overestimation error bound in
tradition Q learning

Demonstrate large estimation error in DQN and how DDQN fixs it and
improve the performance using Atari games




General Background (q learning)
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General Background (pan)

Square Error Loss Lt (Ht) — E[(yt T Q(St7 a’t; Ht))z]

Update gradient VQt Lt (Ht) —_ E[(yt - Q(st) a’t; Ht ))Vgt Q(8t7 a’t; Ht )]
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‘9t is a separate and fixed target network. In DQN, it is fixed and copied from the online network Ht every k steps



General Background (pouble Q learning)
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In double Q learning, two set of weights are maintained, one to determine the action selected by greedy policy and another to

determine its Q value.
However, for DQN, only the offline set of weight is used to both choose the action and determine the target value. This can leads

to overoptimism problem.



Problem: Overoptimism

® Q-learning methods are known to be overestimating the Q value

o Even if Q function is unbiased and avg square error is constant C, with m
actions, the lower bound for errorsis /-2

Lete, = Q¢(s,a) — V*(s) Assume exists a setting of all errors such that max €, <4/ mi_

Let {¢; } a set of positive error of size n. and {e; }be set of negative errors of size m - n

Ifn =mthen ) €, = 0= Ve, = 0 which controdicts €2 = mC thenn < m

ST € <nmax; e <ny/-Z also have o e |l < ny/-% = max; l€; | <ny/-%

By Holder’s inequality 77" (€; )2 < St lle;

1

Soomi(€a)? =20 (6 ) + 2 (6 ) < n— +n2 <L — n(nH)C < mC

m—1 m—1 m—1

Contradict with the assumption that Y " ; €2 < mC therefore max, €, > \/ L_

m—1




Problem: Overoptimism

® Q-learning methods are known to be overestimating the Q value
o In real cases, the estimation error grows as number of actions increases

o Double Q learning has a 0 error lower bound and performs better than Q
learning in real cases
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Problem: Overoptimism

® Q-learning methods are known to be overestimating the Q value

o Even if the true Q values are given, estimating it by sampling points
introduces error, which will be amplified by bootstrap multiple estimations
and pick the largest
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Algorithm Double DQN

Note DQN and Double Q learning both maintains two set of weights, but their usages are different:
® For both of them online network is updated at each step by square error of Q value and target value

e In DQN, another set of weight, target network is used to select and evaluate action

e In Double Q learning, both networks are used in target value function, one for picking best action, one for getting Q value

Combine these two together, we get Double DQN(DDQN):

e Keep online and target networks in DQN, but use Double Q learning style target function by using both networks.
e Minimal possible change to DQN, still compatible with all DQN tricks, i.e. experience replay, target network
e Not additional process or weights are required, reusing the online network

® Less likely to overestimate Q value, thanks to Double Q like target function

DDQN _
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Double DQN Results
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Double DQN results

The Q value estimation comparison
support the claim about Double
DQN effectiveness on reducing

errors
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Motivation: Does every action equally important?

@ DQN and other methods estimate Q value in one stream

o Means all possible actions have separate Q values, and are updated
independently.

o Resulting inefficiency state value update, as all actions’ Q values needs to be
changed

e Usually, most of the actions are not important

o For example in racing games, an action is not critical unless you are about to
crash

o But the value for each state is always important as Q*(s,a) should be V*

o To improve state value learning efficiency and ignore useless actions,
estimate them separately, in terms of state value V and action advantage A



Contributions

Duellng DQN

Propose a decoupled estimator architecture for state value and action
advantages, to replace previous single stream Q value estimator

- The new architecture can be used together with many existing RL methods
In Atari games, Dueling DQN outperforms DDQN, and with prioritized
replay, it is the SOTA in ALE benchmark




Most actions are useless
AW(S,(I) — Qw(sa a) — V'/r(s) — Qw(sa a) — IECLNTI'(S) [QW(Sa a')]

VALUE ADVANTAGE

anw(s) [AW(S, a)] =0

For a deterministic policy, for example greedya,"< — a,j['g max Q(S’ a,)
acA

Q(s,a*) =V(s)and A(s,a*) =0

VALUE ADVANTAGE

What is the take away from this?
e State value function has a greater influence to Q value, and the performance of agent

e Advantage value for many action state pairs are not that important, as their are likely to be zero




Algorithm Dueling DQN

Dueling network = CNN + two MLP that output:

e Ascalar state value V(S,H, /B)

e An |A|-dimensional 14(87 a, 9, Oé)

J

Decoupling Q value function into state value and advantage:
® Use aggregating module to recombine these two parts

* Q(Sa a, 0) «, IB) — V(S; 07 IB) + A(87 a, 07 a) | V(s)

aggregator

Q(s,a)

A(s,a)



Aggregating module
o simpleadd Q(s,a;0,a,8) =V(s;0,8) + A(s,a;0, )

o Unidentifiable: give a Q, V and A are not uniquely defined
o Not regulation on A, its expectation should be 0

e Subtract max @(5,a;0,a,8) =V(s;0,8) + A(s,a;0,a) — n’leaic A(s,a';0,a)
a
o  When using a greedy policy, Q(s,a*) = V(s)
o Enforce A to be zero at the chosen action

e Subtract mean Q(Saa; 0, O‘aﬂ) = V(S;ga ﬁ) + A(s, a; 0, a) — = Za'eA A(Saa,; 0, a)

|A|
o Alternative of subtract max
o Loss the original semantics of V and A, and off target by a constant

o But increase stability of optimization, instead of following the optimal advantage, just need to
follow the mean

e Take away:

o Subtract mean is the best, stable + keep relative rank of A
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Discussion of results

. The corridor environment start from one end to red point
. artificially add more useless no-op actions in the action space

. demonstrate an increasing gap between dueling and single stream
Q estimator performances

CORRIDOR ENVIRONMENT 5 ACTIONS 10 ACTIONS 20 ACTIONS
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Critique / Limitations / Open Issues

Double DQN

Although both estimation error lower bound and empirical results are
presented, these two do not agree with each other. A theoretical analysis of
typically relation between error and number of actions will be better

Duellng DQN

The ability to handle no-op actions is only demonstrated by corridor
environment, will be interesting to see the behavior on Atari game with
expanded action space

- The idea of saliency map on input frame is similar to attention, there are
some publications on attention recurrent DQN[lvan 2015 DARQN]



Contributions (Recap)

Double DQN

- Combining DQN and Double Q-learning to solve overoptimism problems for
Q values

Provide a solid theoretical analysis of overestimation error bound in
tradition Q learning

Demonstrate large estimation error in DQN and how DDQN fixs it and
improve the performance using Atari games

Duellng DQN

Propose a decoupled estimator architecture for state value and action
advantages, to replace previous single stream Q value estimator

- The new architecture can be used together with many existing RL methods
In Atari games, Dueling DQN outperforms DDQN, and with prioritized
replay, it is the SOTA in ALE benchmark
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