Policy Gradient Methods for
Reinforcement Learning with
Function Approximation

NeurlPS 2000
Sutton McAllester Singh Mansour

Presenter: Silviu Pitis
Date: January 21,2020

Talk Outline

* Problem statement, background & motivation
* Topics:

— Statement of policy gradient theorem

— Derivation of policy gradient theorem

— Action-independent baselines
— Compatible value function approximation
— Convergence of policy iteration with compatible fn approx

Problem statement

We want to learn a parameterized behavioral policy:
TS — A

that optimizes the long-run sum of (discounted) rewards:

o0
J(0) = Ermory [R(T)] = Ernory Z ’}/t’rlg | S0
t=0

note: the paper also considers

IS | i : th d formulati
This is exactly the reinforcement learning problem! ame results apaly)

Traditional approach: Greedy value-based methods

Traditional approaches (e.g., DP, Q-learning) learn a value function:

o0
QQ(S,G)ETNWG{Z,},trt ‘ sos,aga}

t=0
J(0) = anwﬂ'g(soj Qo(s0, ap)

They then induce a policy using a greedy argmax:

mp(s) = argmax, (Qy(s, a)

Two problems with greedy, value-based methods

|) They can diverge when using function approximation, as small changes in
the value function can cause large changes in the policy

In fully observed, tabular case, guaranteed to
have an optimal deterministic policy.

/

2) Traditionally focused on deterministic actions, but optimal policy may be
stochastic when using function approximation (or when environment is
partially observed)

Proposed approach: Policy gradient methods

* |nstead of acting greedily, policy gradient approaches parameterize the
policy directly, and optimize it via gradient descent on the cost function:

’”(gm) = ””(gt) —aVyJ(0)

* NB1: cost must be differentiable with respect to theta! Non-degenerate,
stochastic policies ensure this.

* NB2: Gradient descent converges to a local optimum of the cost function
— so do policy gradient methods, but only if they are unbiased!

Stochastic Policy Value Function Visualization

We use stochastic policies, because the expectation of an
arbitrary cost function is differentiable with respect to them.

Discrete Case: Visually

(a
[

A A
i I
1(0,0,1) AVic)
_Vic)
_ {0,)
[\ 0,1,0) e 01) VI~ A
o —a -""‘-'b -~ d - ‘--_* i 1”" - =
Mmoo /.o~ c, 10 L <, P T C,
1'- 1’- .r"-
¢, K €, x c]L
2-d parameterization of Value as a function of the
Stochastic action space in 3-d stechastic action space 2-d parameterization

Source: Me (2018)

Stochastic Policy Gradient Descent Visualization

Figure 9 shows that the convergence rate of policy gradi-
Ori1 =0 + 1V J(0)). el}t strongly depends on the ini‘tial copdition. In particular,
Figure 9a),b) show accumulation points along the update
path (not shown here, the method does eventually converge
to V™). This behaviour is sensible given the dependence of

E"l P J . |8 Vg J(0)on (- |s), with gradients vanishing at the boundary
"““' of the polytope.
g
/ :

Figure 9. Value functions generated by policy gradient.

Source: Dadashi et. al. (ICLR 2019)

Unbiasedness is critical

* Gradient descent converges — so do unbiased policy gradient methods!

* Recall the definition of the bias of an estimator:
~ An estimator X of X has bias: E [f(— X}

— It is unbiased if its bias equals 0.

* This is important to keep in mind, as not all policy gradient algorithms are
unbiased, so may not converge to a local optimum of the cost function.

Recap

* Traditional value-based methods may diverge when using function
approximation — directly optimize the policy using gradient descent

Let’s now look at the paper’s 3 contributions:

|) Policy gradient theorem --- statement & derivation
2) Baselines & compatible value function approximation

3) Convergence of Policy Iteration with compatible function approx

Policy gradient theorem (2 forms)
Recall the objective:

NB: This is the true future value of
SUttOﬂ 2000 the policy, not an approximation!

Vot (0) = /L;ds dﬂ(s)ﬁda Vrmglals) Q™ (s, a)

Modern form

Vg J(0) = E(S,a)wﬂg 'V log my(als) Q(s, a)

The two forms are equivalent

VQJ(Q) — /ds dﬂ-(S)/da V@’ITQ((},|3) QWS(S, (1) (Sutton 2000)
S a
Vomg(als)
— n d 7 1. Ty
/S:ds d (8)/@ a mg(als) - Q" (s, a)
= E(5,a)~m Vlog my(als) Q"(s, a)] (Hodern form)

Trajectory Derivation: REINFORCE Estimator

Vo= E,plR(r)] = [dr my(r)R(7)

“Score function gradient
estimator” also known as
VVH —V | dr ﬂ'g(’r)R(T) “REINFORCE gradient estimator”

--- very generic, and very useful!

NB: R(tau) is arbitrary

_ / d’T V?TQ(T)R(’T) (i.e., can be non-differentiable!)

— /dT mo(T)V log mg(T)R(T)

Intuition of Score function gradient estimator

gi = f(xi)Vplog p(x;|0)

Source:; Emma Brunskill

Trajectory Derivation Continued

VVy = Eg [V log my(7)R(7)]

_ _ _
=[Ey | Viog mg(T Tt
- :(] —
i T-1 T-1 |
=Eg | Viog | p(so) || malatlse)P(sis1lst, ar) re
I t=0 t=0 /| _
/T 1 T-1 |
= g ZVlog*zrg at|st)
—0 —0 Almost in modern form!

Just one more step...

o

Trajectory Derivation, Final Step

VVy = Eg

Since earlier rewards do not
depend on later actions.

And this now (proportional to)
modern form!

Variance Reduction

gi = f(xi)Vplog p(x;|0)

If f(X) Is positive everywhere, we are
always positively reinforcing the
same policy!

(X) If we could somehow provide
p negative reinforcement for bad
actions, we can reduce variance...

Source:; Emma Brunskill

Variance Reduction

gi = f(xi)Vplog p(x;|0)

If f(X) Is positive everywhere, we are
always positively reinforcing the
same policy!

(X) If we could somehow provide
p negative reinforcement for bad
actions, we can reduce variance...

Source:; Emma Brunskill

Last step: Subtracting an Action-independent Baseline |

» Note that, in general

d

E [bVglog m(A:|S:)] = E Zw(a|5t)bV9 log 7r(a|5t)]

—E |bVy Zw(a|5t)]

d

= E[bVyl]
=0
» This holds only if b does not depend on the action (though it can depend on the
state)
» Implies we can subtract a baseline to reduce variance Source: Hado Van Hasselt

Last step: Subtracting an Action-independent Baseline |

» A good baseline is v, (S;)

Vodo(m) = E Z Vg log m(A:|Se)(qr(St, At) — v (St))

| t=0 4

Source: Hado Van Hasselt

Compatible Value Function Approximation

* Policy gradient theorem uses an unbiased estimator of the future
rewards, Q"%(s, a)

* What if we use a value function Q"(s, a) to approximate Q"%(s, a)?
Does our convergence guarantee disappear?

* In general, yes.

* But not if we use a compatible function approximator — Sutton et al.
Provides a sufficient (but strong) condition for a function
approximator to be compatible (i.e., provide an unbiased policy
gradient estimate).

Compatible Function Approximation

» If the following two conditions are satisfied:

1. Value function approximator is compatible to the policy

[VuwQuw(s,a) = Vg logmy(s, a)]

2 Value function parameters w minimize the mean-squared error

(£ =Ex, [(@™(s,2) - Qu(s, 2))7])

» Then the policy gradient is exact,

[VeJ(0) = Er, [Volog mg(s, a) Qu(s,a)]

» Remember:

[VoJ(6) = Ex, [Volog mo(s, a) @™(s,2)]]

Source: Russ Salakhutdinov

Proof

» If wis chosen to minimize mean-squared error, gradient of € w.r.t. w
must be zero,

Vwe =0

Er, [(Q%(s,a) — Qu(s,a))VwQu(s,a)] =0

Ex, [(Qg(s, a) — Qu(s, a))Vglog my(s, a): =0
E., [Q%(s,a)Vqlogmy(s,a)] =En, [Qu(s,a)Vglogmy(s,a)]

» S0 Q,(s, a) can be substituted directly into the policy gradient,

VgJ(0) = E,, [Vglog (s, a)Qu(s, a)]

Source: Russ Salakhutdinov

Recap: Compatible Value Function Approx.

* If we approximate the true future reward Q"9(s,a) with an
approximator (s, a) such that V,Q"(s,a) = Vglog mg(als)
the policy gradient estimator remains unbiased — gradient descent

converges to a local optimum.

* Sutton uses this this to prove the convergence of policy iteration

when using a compatible value function approximator.

Critique |: Bias & Variance Tradeoffs

e Monte Carlo returns provide high variance estimates, so we typically
want to use a critic Q" (s, a)to estimate future returns.

e But unless the critic is compatible, it will introduce bias.
« “Tsitsiklis (personal communication) points out that [the critic] being
linear in Vglog mg(als) may be the only way to satisfy the

[compatible value function approximation] condition.”

« Empirically speaking, we use non-compatible (biased) critics because
they perform better.

Critique ll: Policy Gradients are On Policy
Vo (0) = Es g)r, [V 1ogmg(s, a) Q"(s, a)]

e The policy gradient theorem is, by definition, on policy.

e Recall: on-policy methods learn from dat that they themselves
generate; off-policy methods (e.g., Q-learning) can learn from data
produced by other (possibly unknown) policies.

 To use off-policy data with policy gradients, we need to use
importance sampling, which results in high variance.

e Limits the ability to use data from previous iterates.

Recap

* Traditional value-based methods may diverge when using function
approximation — directly optimize the policy using gradient descent

* We do this with the policy gradient theorem:

Vg J(0) = E(S,{I)N?TH Vlog my(als) Q"(s, a)

* Some key takeaways:
* REINFORCE log-gradient trick is very useful (know it!)

* We can reduce the variance by using a baseline

* There is thing called compatible approximation, but to my knowledge its not so practical

* IMO, the main limitation of policy gradient methods is their on-policyness (but see DPG!)

