
Continuous Control With
Deep Reinforcement Learning

Timothy P. Lillicrap∗ , Jonathan J. Hunt∗ , Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver & Daan Wierstra

Presenters:
Anqi (Joyce) Yang

Jonah Philion

Jan 21 2020

Robotics in 2020

Formalism: MDPs with
● Unknown transition dynamics
● Continuous action space

Can reinforcement learning solve robotics?
Alpha Go Zero (Silver et al, Nature, 2017)

Dota 5 (OpenAI et al, 2019, https://cdn.openai.com/dota-2.pdf)

Alpha Star (Vinyals et al, Nature, 2019)

https://cdn.openai.com/dota-2.pdf

DDPG
(Lillicrap et al, 2015)

A first “Deep” crack at RL with continuous action
spaces

Deterministic Policy Gradient
DPG (Silver et al., 2014)

- Finds deterministic policy
- Applicable to continuous action space

Deterministic Policy Gradient
DPG (Silver et al., 2014)

- Finds deterministic policy
- Applicable to continuous action space

- Not learning-based, can we do better?

DDPG
DDPG (Deep DPG) in one sentence:

● Extends DPG (Deterministic Policy Gradients, Silver et al., ‘14) using deep
learning,

● borrowing tricks from Deep Q-Learning (Mnih et al., ‘13)

DDPG
DDPG (Deep DPG) in one sentence:

● Extends DPG (Deterministic Policy Gradients, Silver et al., ‘14) using deep
learning,

● borrowing tricks from Deep Q-Learning (Mnih et al., ‘13)

● Contribution: model-free, off-policy, actor-critic approach that allows us to
better learn deterministic policies on continuous action space

A Taxonomy of RL Algorithms

Image credit: OpenAI Spinning Up, https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#id20

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#id20

A Taxonomy of RL Algorithms

Image credit: OpenAI Spinning Up, https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#id20

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#id20

DDPG
DDPG (Deep DPG) is a model-free, off-policy, actor-critic algorithm that combines:

● DPG (Deterministic Policy Gradients, Silver et al., ‘14): works over continuous
action domain, not learning-based

● DQN (Deep Q-Learning, Mnih et al., ‘13): learning-based, doesn’t work over
continuous action domain

Background - DPG

Background - DPG

Background - DPG
In Q-learning, we find deterministic policy by

Background - DPG
In Q-learning, we find deterministic policy by

Problem: In large discrete action space or continuous action space, we can’t plug
in every possible action to find the optimal action!

Background - DPG
In Q-learning, we find deterministic policy by

Problem: In large discrete action space or continuous action space, we can’t plug
in every possible action to find the optimal action!

Solution: Learn a function approximator for argmax, via gradient descent

Background - DPG
● Goal:

Derive a gradient update rule to learn deterministic policy

Background - DPG
● Goal:

Derive a gradient update rule to learn deterministic policy

● Idea:

Adapt the stochastic policy gradient formulation for deterministic policies

Background - DPG
● Vanilla Stochastic Policy Gradient:

Source: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

Background - DPG
● Vanilla Stochastic Policy Gradient:

Source: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

Background - DPG
● Vanilla Stochastic Policy Gradient:

Source: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

Background - DPG
● Vanilla Stochastic Policy Gradient:

Source: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

Background - DPG
● Vanilla Stochastic Policy Gradient:

Source: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

Not trivial to compute!

model-free

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

Background - DPG
● Vanilla Stochastic Policy Gradient with Monte-Carlo Sampling:

Source: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

Background - DPG
● Vanilla Stochastic Policy Gradient with Monte-Carlo Sampling:

Problem: Point Estimate - High Variance!

Source: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

Background - DPG
● Vanilla Stochastic Policy Gradient:

Source: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

Background - DPG
● Vanilla Stochastic Policy Gradient:

True value function is still not trivial to compute

Source: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

Background - DPG
● Vanilla Stochastic Policy Gradient:

True value function is still not trivial to compute, but we can approximate it
with a parameterized function:

Source: http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-5.pdf

Background - DPG
● Stochastic Policy Gradient (Actor-Critic)

Background - DPG
● Stochastic Policy Gradient (Actor-Critic)

Actor: Policy function

Background - DPG
● Stochastic Policy Gradient (Actor-Critic)

Actor: Policy function

Critic: Value function , which provides guidance to improve the actor

Background - DPG
● Deterministic Policy Gradient (Actor-Critic)

Background - DPG
● Deterministic Policy Gradient (Actor-Critic)

Objective:

Background - DPG
● Deterministic Policy Gradient (Actor-Critic)

Objective:

Policy Gradient:

Background - DPG
Deterministic Policy Gradient (Actor-Critic)

Objective:

Policy Gradient:

Background - DPG
Stochastic Policy Gradient:

Deterministic Policy Gradient:

Background - DPG
Stochastic Policy Gradient:

Deterministic Policy Gradient: DDPG: Use deep learning
to learn both functions!

Background - DQN

Background - DQN
How do we learn a value function with deep learning?

Background - DQN
How do we learn a value function with deep learning?

Q-Learning:

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

Background - DQN
How do we learn a value function with deep learning?

Q-Learning:

Parameterize Q with a neural network:

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

Background - DQN
How do we learn a value function with deep learning?

Q-Learning:

Parameterize Q with a neural network:

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

Background - DQN
How do we learn a value function with deep learning?

Q-Learning:

Parameterize Q with a neural network:

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

Background - DQN
How do we learn a value function with deep learning?

Q-Learning:

Parameterize Q with a neural network: Problem: t is parameterized
by theta too! Moving target

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

Background - DQN
How do we learn a value function with deep learning?

Q-Learning:

Parameterize Q with a neural network: Solution: Use a “target”
network with frozen params

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

Background - DQN
Deep Q-Learning:

Trick #1: Use a target network

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

Background - DQN
Another problem: Sample Inefficiency

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

Background - DQN
Another problem: Sample Inefficiency

Trick #2: Use a replay buffer to store past transitions and rewards

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

Background - DQN
Another problem: Sample Inefficiency

Trick #2: Use a replay buffer to store past transitions and rewards

Replay buffer also allows the algorithm to be off-policy, since we are sampling
from the buffer instead of sampling a new trajectory according to current policy
each time

Note that this trick is only possible with deterministic policies

Source: http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

http://www.cs.toronto.edu/~rgrosse/courses/csc2515_2019/slides/lec10-slides.pdf

Background Summary
● DPG: Formulates an update rule for deterministic policies, so that we can

learn deterministic policy on continuous action domain

Background Summary
● DPG: Formulates an update rule for deterministic policies, so that we can

learn deterministic policy on continuous action domain

● DQN: Enables learning value functions with neural nets , with two tricks:
○ Target Network
○ Replay Buffer

Background Summary
● DPG: Formulates an update rule for deterministic policies, so that we can

learn deterministic policy on continuous action domain

Model-Free, Actor-Critic

● DQN: Enables learning value functions with neural nets , with two tricks:
○ Target Network
○ Replay Buffer - Off-Policy

Background Summary
● DPG: Formulates an update rule for deterministic policies, so that we can

learn deterministic policy on continuous action domain

Model-Free, Actor-Critic

● DQN: Enables learning value functions with neural nets , with two tricks:
○ Target Network
○ Replay Buffer - Off-Policy

● DDPG: Learn both the policy and the value function in DPG with neural
networks, with DQN tricks!

Method - DDPG

DDPG Problem Setting

DDPG Problem Setting

Policy (Actor) Network
Deterministic, Continuous Action Space

DDPG Problem Setting

Policy (Actor) Network
Deterministic, Continuous Action Space

Value (Critic) Network

DDPG Problem Setting

Policy (Actor) Network
Deterministic, Continuous Action Space

Value (Critic) Network

Target Policy and Value Networks

Method

Credit: Professor Animesh Garg

Method

Credit: Professor Animesh Garg

Method

Credit: Professor Animesh Garg

Method

Method

“Soft” target network update

Replay buffer

Method

Add noise for exploration

Method

Value Network Update

Method

Policy Network Update

Method

Method

DDPG: Policy Network, learned with Deterministic Policy Gradient

Experiments

Light Grey: Original DPG
Dark Grey: Target Network
Green: Target Network + Batch Norm
Blue: Target Network from pixel-only inputs

Experiments Do target networks and batch norm matter?

Light Grey: Original DPG
Dark Grey: Target Network
Green: Target Network + Batch Norm
Blue: Target Network from pixel-only inputs

Experiments DPGDDPG

Is DDPG
better than
DPG?

Experiments DPGDDPG

Is DDPG
better than
DPG?

Experiments DPGDDPG

Is DDPG
better than
DPG?

Experiments DPGDDPG

Is DDPG
better than
DPG?

Experiments DPGDDPG

Is DDPG
better than
DPG?

0: random policy

1: planning-based
policy

Experiments DPGDDPG

DDPG still
exhibits high
variance

Experiments How well does Q estimate the true returns?

Discussion of Experiment Results
● Target Networks and Batch Normalization are crucial

● DDPG is able to learn tasks over continuous domain, with better performance
than DPG

● Q values estimated are quite accurate (compared to the true expected
reward) in simple tasks

Discussion of Experiment Results
● Target Networks and Batch Normalization are crucial

● DDPG is able to learn tasks over continuous domain, with better performance
than DPG, but the variance in performance is still pretty high

● Q values estimated are quite accurate (compared to the true expected
reward) in simple tasks, but not so accurate for more complicated tasks

Toy example

Consider the following
MDP:

1. Actor chooses
action -1<a<1

2. Receives reward 1
if action is negative,
0 otherwise

What can we say about Q*(a) in this case?

DDPG

Critic
Perspective

Actor
Perspective

https://docs.google.com/file/d/1NiIhtERhYsBWQmGzHxFIWvELeqEgygqd/preview

Why did this work?
● What is the ground truth deterministic policy gradient?

0

=> The true DPG is 0 in this toy problem!

Gradient Descent on Q* (true policy gradient)

https://docs.google.com/file/d/1TK5V8B2Mq31UVs4NvCZJ2J3PnqvwR8BQ/preview

A Closer Look At Deterministic Policy Gradient
Claim: If in a finite-time MDP

● State space is continuous
● Action space is continuous
● Reward function r(s, a) is piecewise constant w.r.t. s and a
● Transition dynamics are deterministic and differentiable

=> Then Q* is also piecewise constant and the DPG is 0.

Base case n=0 (aka s is terminal):
Q*(s,a) = r(s,a)
=> Q*(s,a) is piecewise constant in for s terminal because r(s,a) is.

Quick proof:
Induct on steps
from terminal
state

Inductive step:
assume true for
states n-1 steps
from terminating
and proof for
states n steps from
terminating

If the dynamics are
deterministic and the reward

function is discrete =>
Deterministic Policies have

0 gradient
(monte carlo estimates become equivalent

to random walk)

DDPG Follow-up
● Model the actor as the argmax of a convex function

○ Continuous Deep Q-Learning with Model-based Acceleration (Shixiang Gu, Timothy Lillicrap,
Ilya Sutskever, Sergey Levine, ICML 2016)

○ Input Convex Neural Networks (Brandon Amos, Lei Xu, J. Zico Kolter, ICML 2017)

● Q-value overestimation
○ Addressing Function Approximation Error in Actor-Critic Methods (TD3) (Scott Fujimoto, Herke

van Hoof, David Meger, ICML 2018)

● Stochastic policy search
○ Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic

Actor (Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, Sergey Levine, ICML 2018)

A cool application of DDPG: Wayve
Learning to Drive in a Day (Alex Kendall
et al, 2018)

http://www.youtube.com/watch?v=eRwTbRtnT1I

Conclusion
● DDPG = DPG + DQN

● Big Idea is to bypass finding the local max of Q in DQN by jointly training a
second neural network (actor) to predict the local max of Q.

● Tricks that made DDPG possible:

○ Replay buffer, target networks (from DQN)

○ Batch normalization, to allow transfer between different RL tasks with different state scales

○ Directly add noise to policy output for exploration, due to continuous action domain

● Despite these tricks, DDPG can still be sensitive to hyperparameters. TD3
and SAC offer better stability.

Questions
1. Write down the deterministic policy gradient.

a. Show that for gaussian action, REINFORCE reduces to DPG as sigma->0

2. What tricks does DDPG incorporate to make learning stable?

Thank you!
Joyce, Jonah

Motivation and Main Problem

1-4 slides

Should capture

- High level description of problem being solved (can use videos, images, etc)

- Why is that problem important?

- Why is that problem hard?

- High level idea of why prior work didn’t already solve this (Short description, later
will go into details)

Contributions
Approximately one bullet, high level, for each of the following (the paper on 1
slide).

- Problem the reading is discussing

- Why is it important and hard

- What is the key limitation of prior work

- What is the key insight(s) (try to do in 1-3) of the proposed work

- What did they demonstrate by this insight? (tighter theoretical bounds, state of
the art performance on X, etc)

General Background
1 or more slides

The background someone needs to understand this paper

That wasn’t just covered in the chapter/survey reading presented earlier in class
during same lecture (if there was such a presentation)

Problem Setting
1 or more slides

Problem Setup, Definitions, Notation

Be precise-- should be as formal as in the paper

Algorithm
Likely >1 slide

Describe algorithm or framework (pseudocode and flowcharts can help)

What is it trying to optimize?

Implementation details should be left out here, but may be discussed later if its
relevant for limitations / experiments

Experimental Results
>=1 slide

State results

Show figures / tables / plots

Discussion of Results
>=1 slide

What conclusions are drawn from the results?

Are the stated conclusions fully supported by the results and references? If so,
why? (Recap the relevant supporting evidences from the given results + refs)

Critique / Limitations / Open Issues
1 or more slides: What are the key limitations of the proposed approach / ideas?
(e.g. does it require strong assumptions that are unlikely to be practical?
Computationally expensive? Require a lot of data? Find only local optima?)

- If follow up work has addressed some of these limitations, include pointers to
that. But don’t limit your discussion only to the problems / limitations that have
already been addressed.

Contributions / Recap
Approximately one bullet for each of the following (the paper on 1 slide)

- Problem the reading is discussing

- Why is it important and hard

- What is the key limitation of prior work

- What is the key insight(s) (try to do in 1-3) of the proposed work

- What did they demonstrate by this insight? (tighter theoretical bounds, state of
the art performance on X, etc)

“Deep” Q learning

 Mnih, 2013, https://arxiv.org/pdf/1312.5602.pdf

O(A) if discrete, O(n forward passes
of Q) otherwise

O(A) if discrete,
O(n forward
passes of Q)
otherwise

Not directly applicable to
continuous action
space!

https://arxiv.org/pdf/1312.5602.pdf

