End to End Learning for Self-Driving Cars

[Bojarski et al 2016]

Tingwu Wang, Dylan Turpin, Animesh Garg

Motivation: End to End Learning

- Why end-to-end instead of a modular system?
 - Gives up interpretability (at least in this case), so needs strong motivation
 - Better performance
 - system optimizes to maximize overall performance, not human chosen intermediate criteria
 - Smaller systems
 - system learns to use minimum number of steps instead of contrived human chosen ones
 - "The Bitter Lesson" [Rich Sutton 2019]
 - General approaches that incorporate minimal prior human knowledge and scale with computing power will eventually outperform handcrafted approaches

Motivation: related works

- Not the first end-to-end lane follower, why build another
- ALVINN (Dean Pomerleau 1989)
 - 30 x 32 pixels, 3 layer fully-connected network
 - 2016 what's changed?
 - "more data and computational power"
 - CNN instead of tiny FC network

[1] Dean A. Pomerleau. ALVINN, an autonomous land vehicle in a neural network. Technical report, Carnegie Mellon University, 1989. URL: http://repository.cmu.edu/cgi/viewcontent.cgi?article=2874&context=compsc

Motivation: related works

- Not the first, why build another
- ALVINN (Dean Pomerleau 1989) [1]
- DAVE (DARPA Autonomous Vehicle 2004) [2]
 - RC car
 - Trained on 2 hours of human time
 - Not reliable: crashed every ~20m in complex environments

[2] Net-Scale Technologies, Inc. Autonomous off-road vehicle control using end-to-end learning, July 2004. Final technical report. URL: http://net-scale.com/doc/net-scale-dave-report.pdf.

Contributions

- **Problem:** Learn to steer from pixels with end-to-end system, learn from (augmented) human driving data
- Why is this problem important?
 - Autonomous driving is high impact
 - End-to-end systems should maximize performance
 - (no trade offs against interpretability, contrived human features)
 - Learn in the target domain
- Why is the problem hard?
 - Driving conditions vary
 - Compounding error, covariate shift
- Key contribution:
 - A road-tested autonomous lane following system that achieves 98% autonomy in realistic driving conditions is trained from human driving data

Imitation learning ≠ Supervised learning

Supervised learning

Assumes train/test data are i.i.d.

Imitation learning

- Train/test data are not i.i.d.
- Test distribution is different from training distribution
- Your actions affect future observations/data

Slide from CSC2621 W2019 Florian Shkurti

Independent in time errors

Image from Katerina Fragkiadaki CMU 10-703 slides

Compounding Errors

Image from Katerina Fragkiadaki CMU 10-703 slides

Data augmentation

- Remind me to ask Professor Garg:
 - Do you expect DAGGER would have worked better than data augmentation?

- **Problem:** Expert data is recorded from human drivers. How can it be augmented with nearby paths?
 - Augmentation is easy in a driving sim.
 - But IRL, the car went where it went, can't go back and take nearby turns

Method: data augmentation

Pomerleau had a similar idea in his 1993 thesis.

Figure 3.4: The single original video image is shifted and rotated to create multiple training exemplars in which the vehicle appears to be at different locations relative to the road.

Method: CNN architecture

(What Pomerleau didn't have...)

- ~27 million connections, ~250 thousand parameters
- "chosen empirically through a series of experiments that varied layer configurations"
- Design
 - Early layers designed to be feature extractors
 - Later layers designed to be a controller
 - But no real separation in an end-to-end system

Evaluation: Autonomy

- How should on-road performance be evaluated?
 - Autonomy
 - What percentage of the time can the car drive itself without human intervention?
 - On-road result: 98% autonomy, about 1 intervention every 5 minutes
- How should simulator performance be evaluated?
 - Estimate autonomy
 - Intervene when vehicle departs from center line by more than one meter
 - Intervention takes ~6 seconds

autonomy =
$$(1 - \frac{\text{(number of interventions)} \cdot 6 \text{ seconds}}{\text{elapsed time [seconds]}}) \cdot 100$$

Evaluation: Feature visualization

- Detects outline of road
- Only training signal is human steering angle, never explicitly trained on these features

Evaluation: Feature visualization

- Features look like noise in forest seen
- Evidence that network learns driving-specific visual features and is not a generic edge or blob detector

Discussion

- Contrast with Dagger? Augmentation vs. Iterative expert labelling
- Existence proof that:
 - CNNs can learn road following without manual decomposition of the problem.
- Clever solution for augmenting human data
- Pros:
 - Simple, Bold
 - Feature visualization confirms driving related features are learned from sparse training signal
- Cons:
 - Not clear how to interpret 98% autonomy
 - No baselines
 - Strong claims about eventual better performance of end-to-end systems demand strong evidence