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Agenda

• Invitation to Imitation

• DAGGER: Dataset Aggregation

• End-to-End learning for self-driving

• Behavioral Cloning from Observation

• Open-Problems and Project Ideas

• Logistics

• Presentation Sign-ups



Invitation to Imitation

Drew Bagnell

Topic: Imitation Learning
Presenter: Animesh Garg



Why Imitation

How are people so good at learning quickly and generalizing?

Facial Gestures 
Age: 19 hours to 20 days

Assembly Tasks from TV
Age: 14-24 months

Direct Imitation
Age: 18 months

Meltzoff & Moore, Science 1977; Meltzoff & Moore, Dev Psych. 1989, Meltzoff 1988



Why Imitation

Consider Autonomous Driving:

• Input: Field of view

• Output: Steering Angle

• Manually programming this is difficult

• Having human expert demonstrate is easy

Learning from expert demonstrations = Imitation Learning!



Why Imitation? Why not RL?

Imitation learning is exponentially lower sample complexity than 
Reinforcement Learning for sequential predictions

RL: such as REINFORCE and Policy Gradient

“Deeply AgcgreVaTeD: Differentiable Imitation Learning for Sequential Prediction”, Sun et al ‘17



Why Imitation? Is it just Supervised Learning?

Supervised Learning:

● Prediction has no effect on world
○ Data is IID

● No sense of “future”

Imitation Learning:

● Predictions lead to actions that will 
change the world and affect future 
actions
○ Data is highly correlated

● Robotic Systems have sophisticated 
planning algorithms for reasoning 
into the future

“Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction”, Sun et al ‘17



Autonomous Driving: Supervision

Supervised Learning Procedure:
○ Drive car
○ Collect camera images and steering angles
○ Linear Neural Net maps camera images to steering angles

ALVINN, Pomerleau, 1989



Autonomous Driving: Supervision

ALVINN, Pomerleau, 1989



Autonomous Driving: Supervision

Supervised Learning Procedure:
○ Drive car
○ Collect camera images and steering angles
○ Linear Neural Net maps camera images to steering angles

ALVINN, Pomerleau, 1989

But this is insufficient. 
Failure Rate is too high!



Autonomous Driving: Post-mortem

• Insufficient Model Capacity?

Linear predictor sufficient in imitation learning case

• Too small of a dataset?

Larger training set data does not improve performance

Hold-out errors close to training errors

(DAgger) A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011



Autonomous Driving: Post-mortem

Real Problem: Errors Cascade:

● Algorithm makes small error with small probability ε
● Steer different than a human driver
● New unencountered images = unencountered states
● Further, larger errors with larger probability



Imitation Learning: Covariate Shift

Supervised Learning = 
Independent data points

Error Bound: Tε over T decisions

(DAgger) A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

Structured Prediction 
→ Highly correlated data
→Cascading errors

Best expected error: O(T2ε) over T decisions



Imitation Learning: DAgger

DAgger (Dataset Aggregation) :

● Uses Interaction
● Have human expert to provide

correct execution

Expected error: 
O(Tε) over T decisions
instead of O(T2ε) 

(DAgger) A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011



Imitation Learning: DAgger

Step 1: Start the same as the supervised 
learning attempt
● Collect data from experts driving (the human 

expert’s policy is the optimal policy 𝜋*)
around a track

● Use expert trajectories with supervised 
learning techniques to obtain a policy (𝜋1)

(DAgger) A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011



Imitation Learning: DAgger

Step 2: Collect more data
● Set parameter 𝛃1 ϵ [0, 1]
● At each timestep collect data:

○ With probability 𝛃1, let the expert take actions
○ With probability (1- 𝛃1), take actions from the 

current policy (𝜋1), but record the expert’s actions

● Combine the newly collected data with all 
the existing data to create an aggregated 
dataset

● Use supervised learning on the aggregated 
dataset to obtain a new policy (𝜋2)

(DAgger) A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011



Imitation Learning: DAgger

Step 3: Iterate step 2, decaying 𝛃i at 
every iteration, until the policy is 
converged

(DAgger) A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011



Imitation Learning: DAgger

Super Tux Kart

(DAgger) A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

• Correct own mistakes
• Aggregation prevents forgetting 

previously learned situations



Imitation Learning: DAgger

Super Mario Bros

(DAgger) A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011



Imitation Learning: DAgger

Project BIRD (MURI) 



Anatomy of a Robotic System Architecture

- Sensors (laser RADAR, cameras) feed a 

perception system that computes a rich set of 

features
color and texture, estimated depth, and shape 

descriptors of a LADAR point cloud. 

- These features are then massaged into an 

estimate of “traversability” – a scalar value that 

indicates how difficult it is for the robot to travel 
across the location on the map

- “Cost map” is updated as robot moves and 

perceives



A Closer Look: Role of imitation learning

● Perception computes features that describe the environment
● We need to connect perception and planning

● Task needs a long, coherent sequence of decisions to achieve the goal.

● Requires planning and re-planning upon new information acquisition

● Manual engineering? → difficult
● Supervised learning method? → not interactive, unlikely to work
● Imitation learning techniques make it possible to automate the process. 
● The imitation learning algorithm then must transform the feature vector of 

each state into a scalar cost value that the robot’s planner uses to compute 
optimal trajectories



Cost Function Modelling

• Costing is one of the most difficult tasks in autonomous navigation.

• Inverse Optimal Control: Cost functions generalize more broadly than 
policies or value functions, so learn and plan with cost functions 
when possible, and revert to directly learning values or policies only 
when it is too computationally difficult infer cost functions



Inverse Optimal Control for Imitation Learning

● IOC attempts to find a cost function that maps perception features 
to a scalar cost signal
○ A teacher (human expert driver) drives the robot through a representative 

stretch of complex terrain. 
○ The robot can use imitation to learn this cost-function mapping. 

● Limitations
○ Assumes teacher’s driving pattern is near optimal.
○ Potentially substantially more computationally complex and sample 

inefficient than DAgger



Inverse Optimal Control for Imitation Learning

● Also called inverse reinforcement learning (Ng & Russell, 2000)
● Distinction between imitation learning and IOC 

○ Imitation learning is the task of learning by mimicking expert demonstrations.
○ IOC is the problem of deriving a reward/cost function from observed behavior.
○ IOC is one approach to imitation learning, policy search approaches like DAgger are 

another

● Long history
○ Linear-Quadratic-Regulator [Kalman, 1964]
○ Convex programming formulation for the multi-input, multi-output linear-quadratic 

problem [Boyd et al., 1994]



Inverse Optimal Control for Imitation Learning

• Enabling a cost function to be derived for essentially arbitrary stochastic control problems using 
convex optimization techniques – any problem that can be formulated as a Markov Decision 
Problem.

• Requiring a weak notion of access to the purported optimal controller e.g. access to example 
demonstrations.

• Statistical guarantees on the number of samples required to achieve good predictive performance 
and even stronger results in the online or no-regret setting that requires no probabilistic 
assumptions at all.

• Robustness to imperfect or near-optimal behavior and generalizations to probabilistically predict 
the behavior of such approximately optimal agents.

• Some algorithms further require only access to an oracle that can solve the optimal control 
problem with a proposed cost function a modest number of times to address the inverse problem



LEARCH: Learning to Search

• Best of both worlds

• Pure imitation + 
Inverse Optimal Control

Zucker et al 2011, Ratliff et al 2009



LEARCH: Learning to Search

● Consider a discretized grid of states that the robot can occupy. 
● Teacher provides path from a start point to a goal point.
● Choose an initial cost function 

For every iteration of the algorithm:
1. Compute the current best optimal plan/policy
2. Identify where the plan and teacher disagree and create a data set 

consisting of features and the direction in which we should modify the costs
3. Use a supervised learning algorithm to turn that data set into a simple 

predictor for updating costs
4. Compute a cost function as a (weighted) sum of the learned predictors.

Zucker et al 2011, Ratliff et al 2009



LEARCH: Learning to Search

Initialize with constant cost → straight line path between start and end

Places where teacher visits but current plan does not → lower cost 

Places where current plan visits but teacher does not → raise cost 

A demonstration of the Learning to Search (LEARCH) algorithm applied to provide automated interpretation in traversability
cost (Bottom) of satellite imagery (Top) for use in outdoor navigation. Brighter pixels indicate a higher traversability cost on a 
logarithmic scale. From left to right illustrates progression of the algorithm, where we see the current optimal plan (green)
progressively captures more of the demonstration (red) correctly.

Zucker et al 2011, Ratliff et al 2009



Imitation Learning: Challenges

Problems:

● Teacher is not truly an optimal controller
● World does not operate as simple Markov Decision Process
● Given a single behavior, there are many cost functions that lead to the same behavior 

(indeterminate)

Two commonly used notions of successful IOC used in machine learning:

1. Consider a class of reward functions that are linear in a set of features that describe states. 
Approach guarantees that the policy found will have performance comparable to or better than 
that of the expert even when the reward function itself cannot be identified. [Abbeel, 2004] 

2. Ignore whether the teacher is actually an optimal controller or even whether there is a reward 
function. Quantifies a notion of successful imitation, e.g. agreement with teacher’s trajectory, 
then attempt to optimize that notion of agreement with the teacher. [Ratliff et al., 2006b, 
2009b]



Uncertainty with Probabilistic Approaches

• Many recent IOC learning techniques manage uncertainty 

• Make probabilistic predictions of what people (non-optimal agents) 
are likely to do in the real world (non-MDP environment). [Kitani et 
al., 2012, Ziebart et al., 2008a, Ziebart et al., 2008b, Ziebart et al., 
2010, 2013, Baker et al., 2009]



Since the paper came out…

● AggraVaTe: Reinforcement and Imitation Learning via Interactive No-Regret 
Learning

● Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction

● Learning from Demonstrations for Real World RL
● Guided Policy Search
● Guided Cost Learning / Generative Adv. Imitation Learning
● One Shot Imitation Learning
● Third-Person Imitation Learning

And many more!



References

All images taken from one of the following sources:
1. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, 

Ross, Gordon & Bagnell (2010). (DAgger algorithm)
2. An Invitation to Imitations, Ross (2015)

3. John Schulman’s 2015 lecture at UC Berekley on DAgger: 
http://rll.berkeley.edu/deeprlcourse-fa15/docs/2015.10.5.dagger.pdf

Additional sources are:
4. Efficient Reductions for Imitation Learning, Ross, Bagnell (2010) (SMILe algorithm)
5. Efficient Reductions for Imitation Learning Supplementary Material, Ross, Bagnell (2010)

http://rll.berkeley.edu/deeprlcourse-fa15/docs/2015.10.5.dagger.pdf


Agenda

• Invitation to Imitation

• DAGGER: Dataset Aggregation

• End-to-End learning for self-driving

• Behavioral Cloning from Observation

• Open-Problems and Project Ideas

• Logistics

• Presentation Sign-ups



RL in Recent Memory

DQN (Mnih et al. 2013)
DAGGER (Guo et al, 2014)

Policy Gradients (Schulman et al 2015)
DDPG (Lillicrap et al. 2015) 

A3C (Mnih et al. 2016)

Policy Gradients 
+

Monte Carlo Tree Search
(Silver et al. 2016)

…

Levine et al. (2015)
Krishnan, G. et al (2016)

Rusu et al (2016)
Bojarski et al. (2016) nVidia

…

Atari Go Robotics
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Going from Go to Robot/Control

• Known Environment vs Unstructured/Open World

• Need for Behavior Transfer

• Discrete vs Continuous States-Actions

• Single vs Variable Goals

• Reward Oracle vs Reward Inference



Other Open Problems

• Single algorithm for multiple tasks

• Learn new tasks very quickly

• Reuse past information about related problems

• Reward modelling in open environment 

• How and what to build a model of?

• How much to rely on the model vs direct reflex (model-free)

• Learn without interaction if seen a lot of data 



What this course plans to cover

• Imitation Learning: Supervised

• Policy Gradient Algorithms

• Actor-Critic Methods

• Value Based Methods

• Distributional RL

• Model-Based Methods

• Imitation Learning: Inverse RL

• Exploration Methods

• Bayesian RL

• Hierarchical RL
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Presentations

Jan 21

• Need 8 students – 4 teams of 2. 

• Presentation Review Friday and/or Sat (video call) – (exception)

Jan 28

• Need 8 students – 4 teams of 2. 

• Presentation Review Tues Jan 21 and Wed Jan 22 (week in advance)


