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Humans find new ways to interact with
environment




Motivation: Reward-Free Option Discovery

Reward-free Option Discovery: RL agent learn skills (options) without
environment reward

Research Questions:

. How can we learn diverse set of skills?
.- Do these skills match with human priors on what are useful skills?
. Can we use these learned skills for downstream tasks?




Limitations of Prior Related Works

- Information Theoretic approaches: mutual info between options
and states, not full trajectories:
max MI(option, f(sta
option
- Multi-goal Reinforcement learning (goal or instruction conditioned
policies) requires:
Extrinsic reward signal (e.g. did the agent achieve the goal/instruction?)
Hand-crafted instruction space (e.g. XY coordinate of agent)

. Intrinsic Motivations: suffers from catastrophic forgetting
- Intrinsic reward decays over time, may forget how to revisit
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Contributions

1. Problem: Reward-free options discovery, which aims to learn interesting behaviours
without environment rewards (unsupervised)

2. Introduced a general framework Variational Option Discovery objective & algorithm
1. Connected Variational Option Discovery and Variational Autoencoder (VAE)

3. Specific instantiation: VALOR and Curriculum learning:
1. VALOR: a decoder architecture using Bi-LSTM over only (some) states in trajectory
2. Curriculum learning for increasing number of skills when agent mastered current

skills

4. Empirically tested on simulated robotics environments
1. VALOR can learn diverse behaviours in variety of environments
2. Learned policies are universal, can be interpolated and used in hierarchies
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Background: Universal Policies

Aim: Learn a policy t(a|s, ¢) conditioned on state s and context ¢

e Context is sampled at beginning of episode and fixed throughout
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Background: Variational Autoencoders (VAE)

Aim: Learn encoder q4(z|x) conditioned on data x for latent variable z,
and decoder va(x|z) conditioned on z.
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Objective Function: Evidence Lowerbound (ELBO)
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Intuition: Why VAE + Universal Policies?
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Variational Option Discovery Algorithms
(VODA)

Aim: Learn universal policy t(a|s, ¢) such that a decoder pp (c|T)
conditioned on trajectory T = (s, ag, S1, 44, ..., ST) €an distinguish contexts

Objective Function:

Decoder
Reconstruction

n;%x *c~G[ ST~TT,C [iog Pp (ClT)] + ﬁf\"[(ﬂ"C,)]
H(mle) = Erepc[Xe H(m( st )]

Entropy Regularization




Variational Option Discovery Algorithms
(VODA)

0 o - Algorithm:
/‘\ ‘\ 1. Sample contextc ~ G Create dataset
: O A
D= {C T }i=1,..,N

$o & sp 2 Roll out trajectory T ~ mgy (- | -, )
"f-‘~'~-‘-‘-i.'.'.t_'.'j_'_'_j_'_'_"""""j_‘_‘_f_‘_'_l'.'.—'_':—'—'—”J' 3. Update policy via RL to maximize:
Trajectory T =
\ rg%x IIE:C~G [IET~7'L',C [log Pp (CIT)] + ﬁ%(ﬂlC)]
Decoder \I Policy ’
pp(c|T) ," mg(als, c) 4. Update decoder with supervised learning
!+ MDP
c ol max E. ;.p[log pp (c|7)]
ontext D



Variational Option Discovery Algorithms
(VODA)

madx *c~G[ r~nc [l0g pp (c|T)] + ﬁ}[(Tl’lC)] \

1T,D

Algorithm 1 Template for Variational Option Discovery with Autoencoding Objectiye

Generate 1nitial policy mg,, decoder Dy,

for k=0,1,2,...do
Sample context-trajectory pairs D = {(c", 7")};=1.... N, by first sampling a context ¢ ~ G and
then rolling out a trajectory in the environment, 7 ~ g, (|-, ¢).
Update policy with any reinforcement learning algorithm to maximize Eq. 2, using batch D
Update decoder by supervised learning to maximize E [log Pp(c¢|7)], using batch D

end for




VAE vs

VODA
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VAE VODA
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VAE vs VODA: Equivalence Proof , _ . mandon
/action policy

Di1(q¢(z|x)|p(2)) ~ = Dk (P(z|m, c)||p(z|mo)) —H (m|c)

Y |
Entropy Constant

Reiularization Indeiendent of



Connection to existing works: VIC

Variational Intrinsic Controls (VIC):

max Eg ., [E t~mc [logpp(clsq, sp)] + H(G(: |So))]

i’n’D c~G(:[so) \
1. Can optimizes G 2. Context 3. Decoder 4. Entropy
(But not done in depends on only sees first regularization on G,
experiments) initial state s, and last state no policy entropy

regularization

voba)  max Ec_g|Errc [logpp (c[0)] + BFH (m|c)]



Connection to existing works: DIAYN

Diversity Is All You Need (DIAYN):
- - T

max Ec.g [Eqvr,c Z(log Pp(c|se) —logG(c)) |+ BH (m|c)

,D ~ \ \ _

1. Factorizes probability: 2. G is fixed so can
ignore this term

T
logpp(clt) = log Pp(cls;)
t=0

\
voba)  max Ec_g|Errc [logpp (c[0)] + BFH (m|c)]



VALOR: Variational Autoencoding
Learning of Options by Reinforcement

Decoder Architecture: Bi-LSTM IogT;Aits
1. Only sees states Average Pooling
1 1 o+ 1
Linear Linear ' Linear Linear |
2. Not just average of per time-step I I iy

computation (i.e. DIAYN)

T %

T
log P, (c|t) # log z f (s, €)
t=0

SkS0 S2kSk Sg9k~Sgk ST Sg9k

3. Everi K=11 states



Curriculum on Contexts

e Standard approach (VIC, DIAYN): Uniform

e sample discrete contexts with uniform
distribution

¢ ~ Uniform(K,,, ;)

* Proposed Curriculum:
* When El[log Pp(c|t)] = 0.86,

K < min(int (1.5X K+ 1),K,,5,)

Kmax

—— Uniform
— Curriculum

Training
[teration
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Experiments

1. What are the best practices when training VODAs?

1. Does the curriculum learning approach help?
2. Does embedding the discrete context help vs. one-hot vector?

2. What are the qualitative results from running VODA?
1. Are the learned behaviors recognizably distinct to a human?
2. Are there substantial differences between algorithms?

3. Are the learned behaviors useful for downstream control tasks?



Environments: Locomotion environments

Note: State is given as

/45\"' vectors, not raw pixels
=i
HalfCheetah Swimmer
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(a) X-Y traces of example

modes in Point. (b) Robot hand environment. (c) Toddler environment. (d) Ant-Maze environment.
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Implementation Details (Brief)

* Policy m(als,c): LSTM(64) then MLP(32) with tanh activations

* Decoder pp (c|7):
* VALOR: Bidirectional LSTM with hidden size 64 for each direction
* VIC, DIAYN: MLP with hidden size (180, 180)

* Embedding context: size 32, f# = 0.001
* Policy Optimization: vanilla Policy Gradient, and approx. entropy reg.

, Vet(m,c) Z G [VeH(T(:|st, )]

=t

T
Z Vg log g (a¢|st, c)flt

t=0

V@J(ﬂ'g) — EG

T~T,C




Curriculum learning on contexts does help

Env: HalfCheetah

. Reaches Kmax = 64 K
— g Ao o
: : L | |
* Using curriculum S 5 %
allows the agent to i 2 2
master K,,,,, = 64 0 ; 20
contexts faster than = = unif |
. . -4 : Curr 0 Curr
Sampllng Un|form|y 0 2000 4000 0 2000 4000
(b) Uniform vs Curriculum (c) Curriculum, current K



...But struggle in high dimensional environment

Env: Toddler

40 L
* After 15K iterations, 30
only K =40 K 20
behaviours have o
been learned ; r’_J_ — VALOR
0 5000 10000
(g) Toddler, current K. (c) Toddler environment.
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Embedding context is better than one-hot

Env: HalfCheetah
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Qualitatively learns some interesting behaviors

* VALOR/VIC able to
find locomotion gaits
that travel in variety
of speeds/directions

* DIAYN learns
behaviours that
‘attain target state’
(fixed/unmoving
target state)

® Note: Original DIAYN
use SAC Source: https://varoptdisc.github.io/

VALO

DIAY



https://varoptdisc.github.io/

Qualitative results (Quantified)
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Can somewhat interpolate behaviours

* Interpolating between context embeddings vields reasonably smooth
behaviours

* X-Y Traces for behaviours learned by VALOR

§_<\:<~;ﬁ7\f:°\re@@a:¢®, »
BN P L
Embedding 1 Interpolated embedding Embedding 2




Experiment: Downstream tasks on Ant-Maze

=

* Take frozen policy trained with

VALOR as lower level agent l /

* Train upper level policy m(c|s)
using A2C
* Performed similarly to:

* Training both from scratch
* No lower level T(als)

* Fixed random network for
policy as lower level performs
boorlv

(d) Ant-Maze environment.
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Discussion and Limitations

e Learned behaviours are unnatural

* Due to using purely information theoretic approach?
 Struggle in high dimensional environments (e.g. Toddler)

* Need better performance metrics for evaluating discovered
behaviours

* Hierarchies built on top of learned contexts do not outperform
task-specific policies learned from scratch

* But at least universal enough to be able to adapt to more complex tasks

* Specific curriculum on context equation seems unprincipled/hacky



Follow Up Works

« (ICLR’20) Dynamics-Aware Unsupervised Discovery of Skills (DADS):
unsupervised discovery of skills and incorporated into model-based
planning

max MI(s’; c|s)

» State Marginal Matching with Mixtures of Policies: Learns to
maximize the entropy in the visited states when marginalized out
context. Includes entropy of states condition on context

H(s|c) = Ec~g, s~n(|c) [ logp(s|c)]



Future Research Directions

* Fix “unnaturalness” of learned behaviours: incorporate human
priors?
* Distinguish trajectories in ways which corresponds to human intuition
* Leverage demonstration? Human-in-the-loop feedback?

e Architectures: Use Transformers instead of Bi-LSTM for decoder
e As done in NLP: ELMO (Bi-LSTM) vs BERT (Transformer)
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