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Humans find new ways to interact with 
environment



Motivation: Reward-Free Option Discovery

Reward-free Option Discovery: RL agent learn skills (options) without 
environment reward

Research Questions:

• How can we learn diverse set of skills? 
• Do these skills match with human priors on what are useful skills?
• Can we use these learned skills for downstream tasks?



Limitations of Prior Related Works

• Information Theoretic approaches: mutual info between options 
and states, not full trajectories: 

• Multi-goal Reinforcement learning (goal or instruction conditioned 
policies) requires:
• Extrinsic reward signal (e.g. did the agent achieve the goal/instruction?)
• Hand-crafted instruction space (e.g. XY coordinate of agent)

• Intrinsic Motivations: suffers from catastrophic forgetting
• Intrinsic reward decays over time, may forget how to revisit 
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Contributions 

1. Problem: Reward-free options discovery, which aims to learn interesting behaviours 
without environment rewards (unsupervised)

2. Introduced a general framework Variational Option Discovery objective & algorithm
1. Connected Variational Option Discovery and Variational Autoencoder (VAE)

3. Specific instantiation: VALOR and Curriculum learning:
1. VALOR: a decoder architecture using Bi-LSTM over only (some) states in trajectory
2. Curriculum learning for increasing number of skills when agent mastered current 

skills
4. Empirically tested on simulated robotics environments

1. VALOR can learn diverse behaviours in variety of environments
2. Learned policies are universal, can be interpolated and used in hierarchies
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Background: Universal Policies
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Background: Variational Autoencoders (VAE)
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Objective Function: Evidence Lowerbound (ELBO)
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Intuition: Why VAE + Universal Policies?
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Variational Option Discovery Algorithms 
(VODA)
•  

 

 

Entropy Regularization
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Algorithm:

 

 

3.  Update policy via RL to maximize:

4.  Update decoder with supervised learning 
 

 

 

 

 

Variational Option Discovery Algorithms 
(VODA)
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VAE vs VODA
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VAE vs VODA
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How?

“Reconstruction”

“KL on prior”



VAE vs VODA: Equivalence Proof

   

 

  



Connection to existing works: VIC

Variational Intrinsic Controls (VIC):

 

 
(VODA)

 
 3. Decoder 

only sees first 
and last state

 



Connection to existing works: DIAYN

 

Diversity Is All You Need (DIAYN):

 
(VODA)

1. Factorizes probability:  

 



VALOR: Variational Autoencoding
Learning of Options by Reinforcement
•  



Curriculum on Contexts
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Experiments

1. What are the best practices when training VODAs?
1. Does the curriculum learning approach help?
2. Does embedding the discrete context help vs. one-hot vector?

2. What are the qualitative results from running VODA? 
1. Are the learned behaviors recognizably distinct to a human? 
2. Are there substantial differences between algorithms?

3. Are the learned behaviors useful for downstream control tasks?



Environments: Locomotion environments

HalfCheetah Swimmer Ant

Note: State is given as 
vectors, not raw pixels

  



Implementation Details (Brief)
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Curriculum learning on contexts does help

•  
  



…But struggle in high dimensional environment
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Embedding context is better than one-hot

•  

Embedding

One-Hot



Qualitatively learns some interesting behaviors

•VALOR/VIC able to 
find locomotion gaits 
that travel in variety 
of speeds/directions

•DIAYN learns 
behaviours that 
‘attain target state’ 
(fixed/unmoving 
target state)
•Note: Original DIAYN 

use SAC
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Source: https://varoptdisc.github.io/ 

https://varoptdisc.github.io/


Qualitative results (Quantified)

•  

Behaviours



Can somewhat interpolate behaviours

• Interpolating between context embeddings yields reasonably smooth 
behaviours

•X-Y Traces for behaviours learned by VALOR
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Experiment: Downstream tasks on Ant-Maze
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Discussion and Limitations

• Learned behaviours are unnatural
•Due to using purely information theoretic approach?

• Struggle in high dimensional environments (e.g. Toddler)

•Need better performance metrics for evaluating discovered 
behaviours

•Hierarchies built on top of learned contexts do not outperform 
task-specific policies learned from scratch
• But at least universal enough to be able to adapt to more complex tasks

• Specific curriculum on context equation seems unprincipled/hacky



Follow Up Works

•  



Future Research Directions

• Fix “unnaturalness” of learned behaviours: incorporate human 
priors?
• Distinguish trajectories in ways which corresponds to human intuition
• Leverage demonstration? Human-in-the-loop feedback?

•Architectures: Use Transformers instead of Bi-LSTM for decoder
• As done in NLP: ELMO (Bi-LSTM) vs BERT (Transformer)
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