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The exploration-exploitation dilemma in RL

Since the environment is unknown, an RL agent needs to balance:
I Exploration: Searching for high reward regions of the

state-space
I Exploitation: Exploiting the promising regions found

Balancing this trade-off is key to maximising expected return during
learning. A Bayes-optimal policy does so optimally



Bayes-optimal policy

In principle,
I A Bayes-optimal policy can be calculated using the framework

of Bayes-adaptive MDP (BAMDP)
I In a BAMDP, an agent maintains a belief distribution over

possible environments
I A Bayes-optimal agent systematically seeks out new data to

reduce uncertainty, but only insofar as doing so helps maximize
expected return.

I Performance bounded above by the optimal policy of the
corresponding MDP that does not need to take exploratory
actions (knows the MDP dynamics)



RL: MDP

I We define a Markov decision process (MDP) as a tuple
M = (S,A,R,T ,T0, γ,H) with S a set of states, A a set of
actions, R(rt+1|st , at , st+1) a reward function, T (st+1|st , at) a
transition function, T0(s0) an initial state distribution, γ a
discount factor, and H the horizon.

I In the standard RL setting, we want to learn a policy π that
maximises J (π) = ET0,T ,π

[∑H−1
t=0 γ

tR(rt+1|st , at , st+1)
]
, the

expected return.



Bayesian RL: BAMDP

I In the Bayesian formulation of RL, we assume that the
transition and reward functions are distributed according to a
prior b0 = p(R,T ). Since the agent does not have access to
the true reward and transition function, it can maintain a belief
bt(R,T ) = p(R,T |τ:t), which is the posterior over the MDP
given the agent’s experience τ:t = {s0, a0, r1, s1, a1, . . . , st} up
until the current timestep. This is often done by maintaining a
distribution over the model parameters.

I To allow the agent to incorporate the task uncertainty into its
decision-making, this belief can be augmented to the state,
resulting in hyper-states s+t ∈ S+ = S × B, where B is the
belief space.



Bayesian RL: BAMDP

I These transition according to

T+(s+t+1|s
+
t , at , rt) = T+(st+1, bt+1|st , at , rt , bt)

= T+(st+1|st , at , bt) T+(bt+1|st , at , rt , bt , st+1)

= Ebt [T (st+1|st , at)] δ(bt+1 = p(R,T |τ:t+1))
(1)

I The reward function on hyper-states is defined as the expected
reward under the current posterior (after the state transition)
over reward functions,

R+(s+t , at , s
+
t+1) = R+(st , bt , at , st+1, bt+1) = Ebt+1 [R(st , at , st+1)] .

(2)
This results in a BAMDP M+ = (S+,A,R+,T+,T+

0 , γ,H
+)



Bayesian RL: BAMDP

I The agent’s objective is now to maximise the expected return
in the BAMDP,

J +(π) = Eb0,T
+
0 ,T

+,π

H+−1∑
t=0

γtR+(rt+1|s+t , at , s+t+1)

 , (3)

I Solving this BAMDP exactly is extremely intractable.



Bayesian RL: BAMDP

The main challenges are as follows.
I We typically do not know the parameterisation of the true

reward and/or transition model,
I The belief update (computing the posterior p(R,T |τ:t)) is

often intractable, and
I Even with the correct posterior, planning in belief space is

typically intractable.



Proposed : Bayes-Adaptive Deep RL via Meta Learning

I In the typical meta-learning setting, the reward and transition
functions that are unique to each MDP are unknown, but also
share some structure across the MDPs Mi in p(M).

I There exists a true i which represents either a task description
or task ID, but we do not have access to this information.



Proposed : Bayes-Adaptive Deep RL via Meta Learning

I The authors represent this value using a learned stochastic
latent variable mi . So, for a given MDP Mi we can then write

Ri (rt+1|st , at , st+1) ≈ R(rt+1|st , at , st+1;mi ), (4)
Ti (st+1|st , at) ≈ T (st+1|st , at ;mi ), (5)

where R and T are shared across tasks.
I Since we do not have access to the true task description or ID,

we need to infer mi given the agent’s experience up to time
step t collected in Mi ,

τ
(i)
:t = (s0, a0, r1, s1, a1, r2, . . . , st−1, at−1, rt , st), (6)



Proposed : Bayes-Adaptive Deep RL via Meta Learning

Figure 1: VariBAD architecture: A trajectory of states, actions and
rewards is processed online using an RNN to produce the posterior over
task embeddings, qφ(m|τ:t). The posterior is trained using a decoder
which attempts to predict past and future states and rewards from
current states and actions. The policy conditions on the posterior in
order to act in the environment and is trained using RL.



Proposed: Bayes-Adaptive Deep RL via Meta Learning

I Computing the exact posterior is typically not possible: we do
not have access to the MDP (and hence the transition and
reward function), and marginalising over tasks is
computationally infeasible

I We need to learn a model of the environment pθ(τ:H+ |a:H+−1),
parameterised by θ, together with an amortised inference
network qφ(m|τ:t), parameterised by φ, which allows fast
inference at runtime at each timestep t.

I At any given time step t, the model learning objective is thus
to maximise

Eρ(M,τ:H+ ) [log pθ(τ:H+ |a:H+−1)] , (7)

where ρ(M, τ:H+) is the trajectory distribution induced by the
policy



Proposed: Bayes-Adaptive Deep RL via Meta Learning
Optimizing the previous objective is intractable, so the following
tractable lowed bound with a learned approximate posterior
qφ(m|τ:t) which can be estimated by MC sampling is optimized :
I

Eρ(M,τ:H+ ) [log pθ(τ:H+)] ≥ Eρ[Eqφ(m|τ:t)[log pθ(τ:H+ |m)] (8)

− KL(qφ(m|τ:t)||pθ(m))] (9)
= ELBOt .

I The term Eq[log p(τ:H+ |m)] is often referred to as the
reconstruction loss, and p(τ:t |m) as the decoder.

I The term KL(q(m|τ:t)||pθ(m)) is the KL-divergence between
our variational posterior qφ and the prior over the embeddings
pθ(m).

I We set the prior to our previous posterior, qφ(m|τ:t−1), with
initial prior qφ(m) = N (0, I ).



Proposed : Bayes-Adaptive Deep RL via Meta Learning

Figure 2: VariBAD architecture: A trajectory of states, actions and
rewards is processed online using an RNN to produce the posterior over
task embeddings, qφ(m|τ:t). The posterior is trained using a decoder
which attempts to predict past and future states and rewards from
current states and actions. The policy conditions on the posterior in
order to act in the environment and is trained using RL.



Proposed : Bayes-Adaptive Deep RL via Meta Learning

I The overall objective is to maximise

L(φ, θ, ψ) = Ep(M)

J (ψ, φ) + λ

H+∑
t=0

ELBOt(φ, θ)

 . (10)

I Equation (10) is trained end-to-end, and λ weights the
supervised model learning objective against the RL loss.



Results

(a) Example Rollout

(b) Latent Space

Figure 3: Behaviour of VariBAD in the gridworld environment. (a)
Hand-picked but representative example test rollout. The blue
background indicates the posterior probability of receiving a reward at
that cell. (b) Visualisation of the latent space; each line is one latent
dimension, the black line is the average.



Results

Figure 4: Average test performance for the first 5 rollouts of MuJoCo
environments (using 5 seeds).



Summary, Limitations, Future Work

I This papers attempts to learn an approximation to the
Bayes-optimal policy in a BAMDP.

I The authors formulate the problem as a Meta Learning setting
and through VI learn embeddings corresponding to different
MDPs as a proxy for the posterior over belief.

I Training and test distributions are the same. How good is
OOD generalization?

I What happens when the problem cannot be conveniently
formulated as Meta Learning?

I How to scale it to high dimensional observations (images)?
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