DAC: The Double Actor-Critic Architecture for Learning Options

NeurIPS 2019 Shangtong Zhang, Shimon Whiteson

Presenter: Ehsan Mehralian March 17, 2020

Outline

- Problem statement
- Option Critic
- Double Actor Critic

Problem statement

- Temporal abstraction is a key component in RL:
 - Better exploration
 - Faster learning
 - Better generalization
 - Transfer learning
- MDP + Temporal Abstract actions = SMDP

- SMDP algorithms are data inefficient —> The option framework (Sutton et al., 1999)
- Rises two problems:
 - Learning options
 - Learning a master policy

Previous works

- Based on finding subgoals:
 - Difficult to scale up
 - Can be as expensive as the entire task

- Using value-based methods:
 - Can't cope with large action spaces
 - Policy based methods have better convergence properties with function approximation

The Option Critic framework (PL Bacon et.al, 2017)

- Blurs the line between discovering options and learning options
- The first scalable end-to-end approach
 - No slow down within a single task
 - Faster convergence in transfer learning

Background

MDP

$$M \equiv \{S, A, R(s, a), P(s'|s, a), P_0(s), \gamma\}$$

Goal:

$$\pi^* = \arg\max_{\theta} \rho(\pi_{\theta}) = \arg\max_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t | s_0, \pi_{\theta} \right]$$

Policy Gradient

$$\frac{\partial \rho}{\partial \theta} = \sum_{s} d^{\pi}(s) \sum_{a} \frac{\partial \pi(s, a)}{\partial \theta} Q^{\pi}(s, a)$$

$$d^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^t Pr(s_t = s | s_0, \pi)$$

The Options Framework

- A Markovian Option $\omega \in \Omega$ is a triple: $(I_{\omega}, \pi_{\omega}, \beta_{\omega})$
 - I_{ω} Initiation set $I_{\omega} \subset S$
 - π_{ω} Intra-option policy
 - β_{ω} Termination function $\beta_{\omega}: S \to [0,1]$

• Let $\pi_{\omega,\theta}$ denote the intra-option policy of option ω parametrized by θ and $\beta_{\omega,\vartheta}$, the termination function of ω parameterized by ϑ

Discounted return

$$\rho(\Omega, \theta, \vartheta, s_0, w_0) = \mathbb{E}_{\Omega, \theta, \omega} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | s_0, \omega_0 \right]$$

Discounted return

$$\rho(\Omega, \theta, \vartheta, s_0, w_0) = \mathbb{E}_{\Omega, \theta, \omega} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | s_0, \omega_0 \right]$$

Option-value function

$$Q_{\Omega}(s, w) = \sum_{a} \pi_{\omega, \theta}(a|s) Q_{U}(s, \omega, a)$$

Discounted return

$$\rho(\Omega, \theta, \vartheta, s_0, w_0) = \mathbb{E}_{\Omega, \theta, \omega} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | s_0, \omega_0 \right]$$

Option-value function

$$Q_{\Omega}(s, w) = \sum_{a} \pi_{\omega, \theta}(a|s) Q_{U}(s, \omega, a)$$

Value of executing an action in the context of a state-option pair

$$Q_U(s,\omega,a) = r(s,a) + \gamma \sum_{s'} P(s'|s,a)U(\omega,s')$$

Discounted return

$$\rho(\Omega, \theta, \vartheta, s_0, w_0) = \mathbb{E}_{\Omega, \theta, \omega} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | s_0, \omega_0 \right]$$

Option-value function

$$Q_{\Omega}(s, w) = \sum_{a} \pi_{\omega, \theta}(a|s) Q_{U}(s, \omega, a)$$

Value of executing an action in the context of a state-option pair

$$Q_U(s,\omega,a) = r(s,a) + \gamma \sum_{s'} P(s'|s,a)U(\omega,s')$$

Option-value function upon arrival

$$U(\omega, s') = (1 - \beta_{\omega, \vartheta}(s'))Q_{\Omega}(s', w) + \beta_{\omega, \vartheta}(s')V_{\Omega}(s')$$

The Option Critic framework (cont.)

• (s,ω) pairs lead to an augmented state space

One step probability transition

$$P(s_{t+1}, \omega_{t+1}|s_t, \omega_t) = \sum_{a} \pi_{\omega_t, \theta}(a|s_t) P(s_{t+1}|s_t, a_t) (1 - \beta_{\omega, \theta}(s_{t+1})) 1_{w_t = w_{t+1}} + \beta_{\omega, \theta}(s_{t+1}) \pi_{\Omega}(\omega_{t+1}|s_{t+1}))$$

The option Critic framework (cont.)

Theorem 1 (Intra-Option Policy Gradient Theorem)

$$\frac{\partial \rho}{\partial \theta} = \sum_{s, w} \mu_{\Omega}(s, \omega | s_0, \omega_0) \sum_{a} \frac{\partial \pi_{\omega, \theta}(a | s)}{\partial \theta} Q_U(s, w, a)$$

Theorem 2 (Termination Gradient Theorem)

$$\frac{\partial \rho}{\partial \vartheta} = -\sum_{s',\omega} \mu_{\Omega}(s',\omega|s_1,\omega_0) \frac{\partial \beta_{\omega,\vartheta}(s')}{\partial \vartheta} A_{\Omega}(s',w)$$

$$\mu_{\Omega}(s,\omega|s_0,\omega_0) = \sum_{t=0}^{\infty} \gamma^t P(s_t = s, \omega_t = \omega|s_0,\omega_0)$$
13

Algorithm 1: Option-critic with tabular intra-option Qlearning

 $s \leftarrow s_0$ Choose ω according to an ϵ -soft policy over options repeat Choose a according to $\pi_{\omega,\theta}(a \mid s)$ Take action a in s, observe s', r1. Options evaluation: $\delta \leftarrow r - Q_U(s, \omega, a)$ if s' is non-terminal then $\delta \leftarrow \delta + \gamma (1 - \beta_{\omega,\vartheta}(s')) Q_{\Omega}(s',\omega) +$ $\gammaeta_{\omega,artheta}(s')\max_{ar{\omega}}Q_{\Omega}(s',ar{\omega})$ end $Q_U(s,\omega,a) \leftarrow Q_U(s,\omega,a) + \alpha\delta$ 2. Options improvement: $\theta \leftarrow \theta + \alpha_{\theta} \frac{\partial \log \pi_{\omega,\theta}(a \mid s)}{\partial \theta} Q_{U}(s,\omega,a)$ $\vartheta \leftarrow \vartheta - \alpha_{\vartheta} \frac{\partial \beta_{\omega,\vartheta}(s')}{\partial \vartheta} \left(Q_{\Omega}(s',\omega) - V_{\Omega}(s') \right)$ if $\beta_{\omega,\vartheta}$ terminates in s' then choose new ω according to ϵ -soft($\pi_{\Omega}(s')$)

 $s \leftarrow s'$ **until** s' is terminal

Results

Works great!

- Cannot directly leverage recent advances in gradient-based policy optimization from MDPs
- Solution:
 - DAC (The Double Actor-Critic Architecture)

Figure 2: After a 1000 episodes, the goal location in the four-rooms domain is moved randomly. Option-critic ("OC") recovers faster than the primitive actor-critic ("AC-PG") and SARSA(0). Each line is averaged over 350 runs.

The Double Actor-Critic Architecture for Learning Options (DAC)

- Reformulate the option framework as two parallel augmented MDPs
 - A policy based method
 - All policy optimization algorithms can be used off the shelf (advantage over Option Critic)
- Apply an actor-critic algorithm on each augmented MDP (double actor critic)
- Show that one critic is enough.

Two Augmented MDPs

- The high-MDP: M^H
 - The agent makes high-level decisions (i.e., option selection) in M^H according to $\pi, \{\beta_\omega\}$ and thus optimizes $\pi, \{\beta_\omega\}$

- The low-MDP: M^L
 - The agent makes low-level decisions (i.e., action selection) in M^L according to $\{\pi_\omega\}$ and thus optimizes $\{\pi_\omega\}$

High MDP

- Define a dummy option # and $\Omega^+ = \Omega \cup \{\#\}$
- Interpret a state-option pair as new state and an option as a new action.

$$M^{\mathcal{H}} \doteq \{\mathcal{S}^{\mathcal{H}}, \mathcal{A}^{\mathcal{H}}, p^{\mathcal{H}}, p^{\mathcal{H}}_0, r^{\mathcal{H}}, \gamma\}, \quad \mathcal{S}^{\mathcal{H}} \doteq \mathcal{O}^+ \times \mathcal{S}, \quad \mathcal{A}^{\mathcal{H}} \doteq \mathcal{O},$$

$$p^{\mathcal{H}}(S_{t+1}^{\mathcal{H}}|S_t^{\mathcal{H}}, A_t^{\mathcal{H}}) \doteq p^{\mathcal{H}}((O_t, S_{t+1})|(O_{t-1}, S_t), A_t^{\mathcal{H}})) \doteq \mathbb{I}_{A_t^{\mathcal{H}} = O_t} p(S_{t+1}|S_t, O_t),$$

$$p_0^{\mathcal{H}}(S_0^{\mathcal{H}}) \doteq p_0^{\mathcal{H}}((O_{-1}, S_0)) \doteq p_0(S_0) \mathbb{I}_{O_{-1} = \#},$$

$$r^{\mathcal{H}}(S_t^{\mathcal{H}}, A_t^{\mathcal{H}}) \doteq r^{\mathcal{H}}((O_{t-1}, S_t), O_t) \doteq r(S_t, O_t)$$

Define Markov Policy

$$\pi^{\mathcal{H}}(A_t^{\mathcal{H}}|S_t^{\mathcal{H}}) \doteq \pi^{\mathcal{H}}(O_t|(O_{t-1}, S_t)) \doteq p(O_t|S_t, O_{t-1})\mathbb{I}_{O_{t-1} \neq \#} + \pi(S_t, O_t)\mathbb{I}_{O_{t-1} = \#}$$

Low MDP

Interpret state-option pair as state and leave actions unchanged.

$$M^{\mathcal{L}} \doteq \{S^{\mathcal{L}}, \mathcal{A}^{\mathcal{L}}, p^{\mathcal{L}}, p_0^{\mathcal{L}}, r^{\mathcal{L}}, \gamma\}, \quad S^{\mathcal{L}} \doteq S \times \mathcal{O}, \quad \mathcal{A}^{\mathcal{L}} \doteq \mathcal{A},$$

$$p^{\mathcal{L}}(S_{t+1}^{\mathcal{L}}|S_t^{\mathcal{L}}, A_t^{\mathcal{L}}) \doteq p^{\mathcal{L}}((S_{t+1}, O_{t+1})|(S_t, O_t), A_t) \doteq p(S_{t+1}|S_t, A_t)p(O_{t+1}|S_{t+1}, O_t),$$

$$p_0^{\mathcal{L}}(S_0^{\mathcal{L}}) \doteq p^{\mathcal{L}}((S_0, O_0)) \doteq p_0(S_0)\pi(S_0, O_0),$$

$$r^{\mathcal{L}}(S_t^{\mathcal{L}}, A_t^{\mathcal{L}}) \doteq r^{\mathcal{L}}((S_t, O_t), A_t) \doteq r(S_t, A_t)$$

Define Markov policy:

$$\pi^{\mathcal{L}}(A_t^{\mathcal{L}}|S_t^{\mathcal{L}}) \doteq \pi^{\mathcal{L}}(A_t|(S_t, O_t)) \doteq \pi_{O_t}(A_t|S_t)$$

How to sample from these MDPs?

Consider trajectories with non zero probability:

$$\Omega = \{ \tau | p(\tau | \pi, \mathcal{O}, M) > 0 \}$$

$$\Omega^{H} = \{ \tau^{H} | p(\tau^{H} | \pi^{H}, M^{H}) > 0 \}$$

$$\Omega^{L} = \{ \tau^{L} | p(\tau^{L} | \pi^{L}, M^{L}) > 0 \}$$

• Where $\tau = \{S_0, O_0, S_1, O_1, ..., S_T\}$

• Define functions: $f^H:\Omega \to \Omega^H$ $f^L:\Omega \to \Omega^L$

How to sample from these MDPs?

• Lemma 1: $f^H: \Omega \to \Omega^H$ is a bijection and

$$p(\tau|\pi, \mathcal{O}, M) = p(\tau^H|\pi^H, M^H), r(\tau) = r(\tau^H)$$

• Lemma 2: $f^L: \Omega \to \Omega^L$ is a bijection and

$$p(\tau|\pi, \mathcal{O}, M) = p(\tau^L|\pi^L, M^L), r(\tau) = r(\tau^L)$$

• So, Sampling from $\{\pi, \mathcal{O}, M\}$ is equivalent to sampling from $\{\pi^H, M^H\}$ and $\{\pi^L, M^L\}$

How to optimize π^H and π^L in these MDPs?

• Proposition:

$$J = \int r(\tau)p(\tau|\pi, \mathcal{O}, M)d\tau = \int r(\tau^H)p(\tau^H|\pi^H, M^H)d\tau^H = \int r(\tau^L)p(\tau^L|\pi^L, M^L)d\tau^L$$

• Optimizing π , \mathcal{O} in M is equivalent to optimizing π^H in M^H and optimizing π^L in M^L

How to optimize π^H and π^L in these MDPs?

- Observation1: M^H depends on $\{\pi_o\}$ while π^H depends on π and $\{\beta_o\}_{_{II}}$
 - When we keep the intra-option policies $\{\pi_o\}$ fixed and optimize π^H , we are implicitly optimizing π and $\{\beta_o\}$
- Observation 2: M^L depends on π and $\{\beta_o\}$ while π^L depends on $\{\pi_o\}$
 - When we keep the master policy π and the termination conditions $\{\beta_o\}$ fixed and optimize π^L , we are implicitly optimizing $\{\pi_o\}$

Do we need two critics?

 Proposition: When state-value functions are used as critics, one critic can be expressed in terms of the other, and hence only one critic is necessary

$$v_{\pi^{\mathcal{H}}}((o,s')) = \sum_{o'} \pi^{\mathcal{H}}(o'|(o,s')) v_{\pi^{\mathcal{L}}}((s',o')), \text{ where}$$

$$v_{\pi^{\mathcal{H}}}((o,s')) \doteq \mathbb{E}_{\pi^{\mathcal{H}},M^{\mathcal{H}}}[\sum_{i=1}^{\infty} \gamma^{i-1} R_{t+i}^{\mathcal{H}} \mid S_{t}^{\mathcal{H}} = (o,s')],$$

$$v_{\pi^{\mathcal{L}}}((s',o')) \doteq \mathbb{E}_{\pi^{\mathcal{L}},M^{\mathcal{L}}}[\sum_{i=1}^{\infty} \gamma^{i-1} R_{t+i}^{\mathcal{L}} \mid S_{t}^{\mathcal{L}} = (s',o')],$$

Experiments setup

- Want to see
 - DAC vs. existing gradient based option learnings
 - DAC vs. hierarchy-free methods
- DAC can use any policy optimization (AC, SAC, NAC, PPO, ...).
- Here focus on DAC + PPO.

Results

Single task

Figure 1: Online performance on a single task

- DAC + A2C similar to OC
- DAC + PPO similar to PPO

Results

Transfer Learning

CartPole = (balance, balance_sparse)

Reacher = (easy, hard)

Cheetah = (run, backward)

Fish = (upright, downleft)

Walker1 = (squat, stand)

Walker2 = (walk, backward)

Figure 2: Online performance for transfer learning

Recap

- Problem: An end to end, policy based method to learn options and policy over them
- Solution: Option Critic
- Limitation: Can't use other policy optimization algorithms offthe-shelf
 - Solution: Reformulate the SMDP of the option framework as two augmented MDPs (Double Actor Critic)

Thank you